William Anderegg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/742194/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temperature memory and non-structural carbohydrates mediate legacies of a hot drought in trees across the southwestern USA. Tree Physiology, 2022, 42, 71-85.	3.1	17
2	Systematic overâ€crediting in California's forest carbon offsets program. Global Change Biology, 2022, 28, 1433-1445.	9.5	69
3	Opportunities, challenges and pitfalls in characterizing plant waterâ€use strategies. Functional Ecology, 2022, 36, 24-37.	3.6	27
4	Turgor-driven tree growth: scaling-up sink limitations from the cell to the forest. Tree Physiology, 2022, 42, 225-228.	3.1	6
5	Heterogeneous isotope effects decouple conifer leaf and branch sugar δ18O and δ13C. Oecologia, 2022, 198, 357-370.	2.0	2
6	Wood density and hydraulic traits influence species' growth response to drought across biomes. Global Change Biology, 2022, 28, 3871-3882.	9.5	34
7	Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nature Reviews Earth & Environment, 2022, 3, 294-308.	29.7	163
8	Informing Natureâ€based Climate Solutions for the United States with the bestâ€available science. Global Change Biology, 2022, 28, 3778-3794.	9.5	28
9	Future climate risks from stress, insects and fire across US forests. Ecology Letters, 2022, 25, 1510-1520.	6.4	53
10	Cross-biome synthesis of source versus sink limits to tree growth. Science, 2022, 376, 758-761.	12.6	76
11	Drought-induced decoupling between carbon uptake and tree growth impacts forest carbon turnover time. Agricultural and Forest Meteorology, 2022, 322, 108996.	4.8	16
12	The NEON Daily Isotopic Composition of Environmental Exchanges Dataset. Scientific Data, 2022, 9, .	5.3	4
13	Temporal controls on crown nonstructural carbohydrates in southwestern US tree species. Tree Physiology, 2021, 41, 388-402.	3.1	12
14	Seasonal and diurnal trends in progressive isotope enrichment along needles in two pine species. Plant, Cell and Environment, 2021, 44, 143-155.	5.7	6
15	Understanding and predicting forest mortality in the western United States using longâ€ŧerm forest inventory data and modeled hydraulic damage. New Phytologist, 2021, 230, 1896-1910.	7.3	44
16	Rapid and surprising dieback of Utah juniper in the southwestern USA due to acute drought stress. Forest Ecology and Management, 2021, 480, 118639.	3.2	28
17	Testing the effects of species interactions and water limitation on tree seedling biomass allocation and physiology. Tree Physiology, 2021, 41, 1323-1335.	3.1	1
18	Reconciling carbon•ycle processes from ecosystem to global scales. Frontiers in Ecology and the Environment, 2021, 19, 57-65.	4.0	12

#	Article	IF	CITATIONS
19	Genetic variation reveals individualâ€level climate tracking across the annual cycle of a migratory bird. Ecology Letters, 2021, 24, 819-828.	6.4	15
20	Anthropogenic climate change is worsening North American pollen seasons. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	118
21	Optimization theory explains nighttime stomatal responses. New Phytologist, 2021, 230, 1550-1561.	7.3	19
22	Calibration Strategies for Detecting Macroscale Patterns in NEON Atmospheric Carbon Isotope Observations. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005862.	3.0	4
23	Coupled wholeâ€tree optimality and xylem hydraulics explain dynamic biomass partitioning. New Phytologist, 2021, 230, 2226-2245.	7.3	15
24	Climate and functional traits jointly mediate tree waterâ€use strategies. New Phytologist, 2021, 231, 617-630.	7.3	53
25	Why is Tree Drought Mortality so Hard to Predict?. Trends in Ecology and Evolution, 2021, 36, 520-532.	8.7	130
26	Gambling With the Climate: How Risky of a Bet Are Natural Climate Solutions?. AGU Advances, 2021, 2, e2021AV000490.	5.4	7
27	Scaled biomass estimation in woodland ecosystems: Testing the individual and combined capacities of satellite multispectral and lidar data. Remote Sensing of Environment, 2021, 262, 112511.	11.0	33
28	Detecting forest response to droughts with global observations of vegetation water content. Global Change Biology, 2021, 27, 6005-6024.	9.5	73
29	Rapid increases in shrubland and forest intrinsic water-use efficiency during an ongoing megadrought. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	34
30	Forest and woodland replacement patterns following drought-related mortality. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29720-29729.	7.1	99
31	Circadian Regulation Does Not Optimize Stomatal Behaviour. Plants, 2020, 9, 1091.	3.5	8
32	Hillslope Hydrology Influences the Spatial and Temporal Patterns of Remotely Sensed Ecosystem Productivity. Water Resources Research, 2020, 56, e2020WR027630.	4.2	21
33	Competition and Drought Alter Optimal Stomatal Strategy in Tree Seedlings. Frontiers in Plant Science, 2020, 11, 478.	3.6	15
34	Climate-driven risks to the climate mitigation potential of forests. Science, 2020, 368, .	12.6	346
35	Trait velocities reveal that mortality has driven widespread coordinated shifts in forest hydraulic trait composition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8532-8538.	7.1	55
36	Ghosts of the past: how drought legacy effects shape forest functioning and carbon cycling. Ecology Letters, 2020, 23, 891-901.	6.4	168

#	Article	IF	CITATIONS
37	A multi-sensor, multi-scale approach to mapping tree mortality in woodland ecosystems. Remote Sensing of Environment, 2020, 245, 111853.	11.0	45
38	Plant hydraulics play a critical role in Earth system fluxes. New Phytologist, 2020, 226, 1535-1538.	7.3	31
39	A theoretical and empirical assessment of stomatal optimization modeling. New Phytologist, 2020, 227, 311-325.	7.3	69
40	Divergent forest sensitivity to repeated extreme droughts. Nature Climate Change, 2020, 10, 1091-1095.	18.8	160
41	Hot moments in ecosystem fluxes: High GPP anomalies exert outsized influence on the carbon cycle and are differentially driven by moisture availability across biomes. Environmental Research Letters, 2020, 15, 054004.	5.2	16
42	Widespread droughtâ€induced tree mortality at dry range edges indicates that climate stress exceeds species' compensating mechanisms. Global Change Biology, 2019, 25, 3793-3802.	9.5	153
43	The stomatal response to rising CO2 concentration and drought is predicted by a hydraulic trait-based optimization model. Tree Physiology, 2019, 39, 1416-1427.	3.1	25
44	Plant Hydraulic Stress Explained Tree Mortality and Tree Size Explained Beetle Attack in a Mixed Conifer Forest. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3555-3568.	3.0	16
45	Leveraging plant hydraulics to yield predictive and dynamic plant leaf allocation in vegetation models with climate change. Global Change Biology, 2019, 25, 4008-4021.	9.5	38
46	Linking drought legacy effects across scales: From leaves to tree rings to ecosystems. Global Change Biology, 2019, 25, 2978-2992.	9.5	133
47	Plant functional traits and climate influence drought intensification and land–atmosphere feedbacks. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14071-14076.	7.1	70
48	Remote sensing of forest die-off in the Anthropocene: From plant ecophysiology to canopy structure. Remote Sensing of Environment, 2019, 231, 111233.	11.0	45
49	Plant water content integrates hydraulics and carbon depletion to predict drought-induced seedling mortality. Tree Physiology, 2019, 39, 1300-1312.	3.1	79
50	The competitive advantage of a constitutive CAM species over a C ₄ grass species under drought and CO ₂ enrichment. Ecosphere, 2019, 10, e02721.	2.2	13
51	Dead or dying? Quantifying the point of no return from hydraulic failure in droughtâ€induced tree mortality. New Phytologist, 2019, 223, 1834-1843.	7.3	187
52	Climate and plant trait strategies determine tree carbon allocation to leaves and mediate future forest productivity. Global Change Biology, 2019, 25, 3395-3405.	9.5	53
53	Embolism recovery strategies and nocturnal water loss across species influenced by biogeographic origin. Ecology and Evolution, 2019, 9, 5348-5361.	1.9	25
54	Satellite-based vegetation optical depth as an indicator of drought-driven tree mortality. Remote Sensing of Environment, 2019, 227, 125-136.	11.0	79

#	Article	IF	CITATIONS
55	Testing early warning metrics for droughtâ€induced tree physiological stress and mortality. Global Change Biology, 2019, 25, 2459-2469.	9.5	34
56	Phylogenetic and biogeographic controls of plant nighttime stomatal conductance. New Phytologist, 2019, 222, 1778-1788.	7.3	32
57	Pervasive decreases in living vegetation carbon turnover time across forest climate zones. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24662-24667.	7.1	52
58	The impact of rising CO ₂ and acclimation on the response of US forests to global warming. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25734-25744.	7.1	105
59	Greater focus on water pools may improve our ability to understand and anticipate droughtâ€induced mortality in plants. New Phytologist, 2019, 223, 22-32.	7.3	134
60	Dependence of Aspen Stands on a Subsurface Water Subsidy: Implications for Climate Change Impacts. Water Resources Research, 2019, 55, 1833-1848.	4.2	36
61	Research frontiers for improving our understanding of droughtâ€induced tree and forest mortality. New Phytologist, 2018, 218, 15-28.	7.3	334
62	Woody plants optimise stomatal behaviour relative to hydraulic risk. Ecology Letters, 2018, 21, 968-977.	6.4	109
63	Xylem embolism refilling and resilience against droughtâ€induced mortality in woody plants: processes and tradeâ€offs. Ecological Research, 2018, 33, 839-855.	1.5	116
64	Differential declines in Alaskan boreal forest vitality related to climate and competition. Global Change Biology, 2018, 24, 1097-1107.	9.5	37
65	Vegetation demographics in Earth System Models: A review of progress and priorities. Global Change Biology, 2018, 24, 35-54.	9.5	478
66	Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature, 2018, 553, 194-198.	27.8	325
67	Precipitation thresholds regulate net carbon exchange at the continental scale. Nature Communications, 2018, 9, 3596.	12.8	39
68	Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature, 2018, 561, 538-541.	27.8	332
69	Distributed Plant Hydraulic and Hydrological Modeling to Understand the Susceptibility of Riparian Woodland Trees to Droughtâ€induced Mortality. Water Resources Research, 2018, 54, 4901-4915.	4.2	43
70	Soil Moisture Stress as a Major Driver of Carbon Cycle Uncertainty. Geophysical Research Letters, 2018, 45, 6495-6503.	4.0	119
71	A stomatal control model based on optimization of carbon gain versus hydraulic risk predicts aspen sapling responses to drought. New Phytologist, 2018, 220, 836-850.	7.3	93
72	Response of a facultative CAM plant and its competitive relationship with a grass to changes in rainfall regime. Plant and Soil, 2018, 427, 321-333.	3.7	5

#	Article	IF	CITATIONS
73	Tree carbon allocation explains forest droughtâ€kill and recovery patterns. Ecology Letters, 2018, 21, 1552-1560.	6.4	217
74	Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nature Climate Change, 2017, 7, 148-152.	18.8	151
75	Convergence of bark investment according to fire and climate structures ecosystem vulnerability to future change. Ecology Letters, 2017, 20, 307-316.	6.4	90
76	Global patterns of drought recovery. Nature, 2017, 548, 202-205.	27.8	560
77	Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Plant, Cell and Environment, 2017, 40, 816-830.	5.7	276
78	Impacts of droughts on the growth resilience of Northern Hemisphere forests. Global Ecology and Biogeography, 2017, 26, 166-176.	5.8	232
79	Plant hydraulics improves and topography mediates prediction of aspen mortality in southwestern <scp>USA</scp> . New Phytologist, 2017, 213, 113-127.	7.3	77
80	Estimating Global Ecosystem Isohydry/Anisohydry Using Active and Passive Microwave Satellite Data. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3306-3321.	3.0	34
81	Ecosystem dynamics and management after forest dieâ€off: a global synthesis with conceptual stateâ€andâ€ŧransition models. Ecosphere, 2017, 8, e02034.	2.2	56
82	A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology and Evolution, 2017, 1, 1285-1291.	7.8	739
83	Plant water potential improves prediction of empirical stomatal models. PLoS ONE, 2017, 12, e0185481.	2.5	77
84	Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits. New Phytologist, 2016, 212, 577-589.	7.3	168
85	Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5024-5029.	7.1	554
86	When a Tree Dies in the Forest: Scaling Climate-Driven Tree Mortality to Ecosystem Water and Carbon Fluxes. Ecosystems, 2016, 19, 1133-1147.	3.4	73
87	Optimal stomatal behavior with competition for water and risk of hydraulic impairment. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7222-E7230.	7.1	215
88	Large divergence of satellite and Earth system model estimates of global terrestrial CO2Âfertilization. Nature Climate Change, 2016, 6, 306-310.	18.8	309
89	Altitudinal shifts of the native and introduced flora of <scp>C</scp> alifornia in the context of 20thâ€century warming. Global Ecology and Biogeography, 2016, 25, 418-429.	5.8	51
90	Tree mortality from drought, insects, and their interactions in a changing climate. New Phytologist, 2015, 208, 674-683.	7.3	641

#	Article	IF	CITATIONS
91	Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15591-15596.	7.1	92
92	Observed and projected climate trends and hotspots across the National Ecological Observatory Network regions. Frontiers in Ecology and the Environment, 2015, 13, 547-552.	4.0	17
93	Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 2015, 349, 528-532.	12.6	836
94	Tree mortality predicted from drought-induced vascular damage. Nature Geoscience, 2015, 8, 367-371.	12.9	317
95	Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation. New Phytologist, 2015, 205, 1008-1014.	7.3	264
96	Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiology, 2015, 35, tpv073.	3.1	163
97	Awareness of Both Type 1 and 2 Errors in Climate Science and Assessment. Bulletin of the American Meteorological Society, 2014, 95, 1445-1451.	3.3	15
98	Loss of whole-tree hydraulic conductance during severe drought and multi-year forest die-off. Oecologia, 2014, 175, 11-23.	2.0	69
99	Vegetation, land surface brightness, and temperature dynamics after aspen forest dieâ€off. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1297-1308.	3.0	9
100	Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change, 2013, 3, 30-36.	18.8	1,018
101	Drought characteristics' role in widespread aspen forest mortality across Colorado, <scp>USA</scp> . Global Change Biology, 2013, 19, 1526-1537.	9.5	98
102	Drought's legacy: multiyear hydraulic deterioration underlies widespread aspen forest dieâ€off and portends increased future risk. Global Change Biology, 2013, 19, 1188-1196.	9.5	307
103	Hydraulic and carbohydrate changes in experimental drought-induced mortality of saplings in two conifer species. Tree Physiology, 2013, 33, 252-260.	3.1	96
104	Not all droughts are created equal: translating meteorological drought into woody plant mortality. Tree Physiology, 2013, 33, 672-683.	3.1	361
105	Infestation and Hydraulic Consequences of Induced Carbon Starvation. Plant Physiology, 2012, 159, 1866-1874.	4.8	65
106	The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proceedings of the United States of America, 2012, 109, 233-237.	7.1	539
107	Effects of Widespread Droughtâ€Induced Aspen Mortality on Understory Plants. Conservation Biology, 2012, 26, 1082-1090.	4.7	42
108	Linking definitions, mechanisms, and modeling of drought-induced tree death. Trends in Plant Science, 2012, 17, 693-700.	8.8	186

#	Article	IF	CITATIONS
109	Large droughtâ€induced aboveground live biomass losses in southern <scp>R</scp> ocky <scp>M</scp> ountain aspen forests. Global Change Biology, 2012, 18, 1016-1027.	9.5	93
110	Complex aspen forest carbon and root dynamics during drought. Climatic Change, 2012, 111, 983-991.	3.6	52
111	Robust detection of plant species distribution shifts under biased sampling regimes. Ecosphere, 2011, 2, art115.	2.2	10
112	Moving beyond scientific agreement. Climatic Change, 2010, 101, 331-337.	3.6	11
113	The Ivory Lighthouse: communicating climate change more effectively. Climatic Change, 2010, 101, 655-662.	3.6	13
114	Reply to Bodenstein: Contextual data about the relative scale of opposing scientific communities. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, E189-E189.	7.1	0
115	Reply to Aarstad: Risk management versus "truth". Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, E177-E177.	7.1	1
116	Reply to O'Neill and Boykoff: Objective classification of climate experts. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, .	7.1	6
117	Expert credibility in climate change. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12107-12109.	7.1	554