List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7421334/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cigarette Smoke Particle-Induced Lung Injury and Iron Homeostasis. International Journal of COPD, 2022, Volume 17, 117-140.	2.3	3
2	Demystifying idiopathic interstitial pneumonia: time for more etiology-focused nomenclature in interstitial lung disease. Expert Review of Respiratory Medicine, 2022, 16, 235-245.	2.5	2
3	Mucus and mucus flake composition and abundance reflect inflammatory and infection status in cystic fibrosis. Journal of Cystic Fibrosis, 2022, 21, 959-966.	0.7	8
4	Iron and zinc homeostases in female rats with physically active and sedentary lifestyles. BioMetals, 2021, 34, 97-105.	4.1	7
5	Iron chelation may harm patients with COVID-19. European Journal of Clinical Pharmacology, 2021, 77, 265-266.	1.9	17
6	Effects of albumin, transferrin and humic-like substances on iron-mediated OH radical formation in human lung fluids. Free Radical Biology and Medicine, 2021, 165, 79-87.	2.9	8
7	Outcomes of Idiopathic Pulmonary Fibrosis Improve with Obesity: A Rural Appalachian Experience. Southern Medical Journal, 2021, 114, 424-431.	0.7	5
8	Perls' Prussian Blue Stains of Lung Tissue, Bronchoalveolar Lavage, and Sputum. Journal of Environmental Pathology, Toxicology and Oncology, 2021, 40, 1-15.	1.2	13
9	Diacetyl exposure disrupts iron homeostasis in animals and cells. Inhalation Toxicology, 2021, 33, 268-274.	1.6	2
10	Ozone Reacts With Carbon Black to Produce a Fulvic Acid-Like Substance and Increase an Inflammatory Effect. Toxicologic Pathology, 2020, 48, 887-898.	1.8	7
11	Letter to the editor: iron, apoptosis, and ferroptosis. Apoptosis: an International Journal on Programmed Cell Death, 2020, 25, 605-606.	4.9	1
12	Oleic acid and derivatives affect human endothelial cell mitochondrial function and vasoactive mediator production. Lipids in Health and Disease, 2020, 19, 128.	3.0	5
13	A Fulvic Acid-like Substance Participates in the Pro-inflammatory Effects of Cigarette Smoke and Wood Smoke Particles. Chemical Research in Toxicology, 2020, 33, 999-1009.	3.3	7
14	Air pollutants disrupt iron homeostasis to impact oxidant generation, biological effects, and tissue injury. Free Radical Biology and Medicine, 2020, 151, 38-55.	2.9	21
15	Quartz Disrupts Iron Homeostasis in Alveolar Macrophages To Impact a Pro-Inflammatory Effect. Chemical Research in Toxicology, 2019, 32, 1737-1747.	3.3	11
16	Silica Exposure Differentially Modulates Autoimmunity in Lupus Strains and Autoantibody Transgenic Mice. Frontiers in Immunology, 2019, 10, 2336.	4.8	12
17	12-hydroxy oleic acid impairs endothelium-dependent vasorelaxation. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2019, 82, 383-386.	2.3	1
18	Application of diagnostic criteria for non-tuberculous mycobacterial disease to a case series of mycobacterial-positive isolates. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 2019, 17, 100133.	1.3	4

#	Article	IF	CITATIONS
19	Metformin Targets Mitochondrial Electron Transport to Reduce Air-Pollution-Induced Thrombosis. Cell Metabolism, 2019, 29, 335-347.e5.	16.2	75
20	Heme oxygenase activity increases after exercise in healthy volunteers. Free Radical Research, 2018, 52, 267-272.	3.3	11
21	Transition and post-transition metals in exhaled breath condensate. Journal of Breath Research, 2018, 12, 027112.	3.0	12
22	Human lung injury following exposure to humic substances and humic-like substances. Environmental Geochemistry and Health, 2018, 40, 571-581.	3.4	12
23	The toxicology of air pollution predicts its epidemiology. Inhalation Toxicology, 2018, 30, 327-334.	1.6	22
24	Inhalational exposure to particulate matter air pollution alters the composition of the gut microbiome. Environmental Pollution, 2018, 240, 817-830.	7.5	181
25	Iron concentration in exhaled breath condensate decreases in ever-smokers and COPD patients. Journal of Breath Research, 2018, 12, 046009.	3.0	2
26	Macrophages from the upper and lower human respiratory tract are metabolically distinct. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L752-L764.	2.9	19
27	Indices of iron homeostasis correlate with airway obstruction in an NHANES III cohort. International Journal of COPD, 2017, Volume 12, 2075-2084.	2.3	21
28	Heme Oxygenase Activity Correlates with Serum Indices of Iron Homeostasis in Healthy Nonsmokers. Biomarker Insights, 2016, 11, BMI.S36226.	2.5	3
29	Factors associated with self-reported health: implications for screening level community-based health and environmental studies. BMC Public Health, 2016, 16, 640.	2.9	51
30	Air pollution particles and iron homeostasis. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2816-2825.	2.4	20
31	Asthma as a disruption in iron homeostasis. BioMetals, 2016, 29, 751-779.	4.1	10
32	Preface: Special Issue on Air Pollution. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2769-2770.	2.4	0
33	The biological effect of asbestos exposure is dependent on changes in iron homeostasis. Inhalation Toxicology, 2016, 28, 698-705.	1.6	8
34	Article Commentary: Effects of Environmental Pollutants on Cellular Iron Homeostasis and Ultimate Links to Human Disease. Environmental Health Insights, 2016, 10, EHI.S36225.	1.7	22
35	Ozone Exposure Increases Circulating Stress Hormones and Lipid Metabolites in Humans. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1382-1391.	5.6	159
36	Acute Ozone-Induced Pulmonary and Systemic Metabolic Effects Are Diminished in Adrenalectomized Rats. Toxicological Sciences, 2016, 150, 312-322.	3.1	64

ANDREW J GHIO

#	Article	IF	CITATIONS
37	Wood Smoke Particle Sequesters Cell Iron to Impact a Biological Effect. Chemical Research in Toxicology, 2015, 28, 2104-2111.	3.3	37
38	Pleural plaques in smoking-associated fibrosis and pulmonary asbestosis. International Journal of COPD, 2015, 10, 869.	2.3	0
39	Iron and Iron-Related Proteins in Asbestosis. Journal of Environmental Pathology, Toxicology and Oncology, 2015, 34, 277-285.	1.2	7
40	COPD: balancing oxidants and antioxidants. International Journal of COPD, 2015, 10, 261.	2.3	149
41	Perchlorate Exposure is Associated with Oxidative Stress and Indicators of Serum Iron Homeostasis among NHANES 2005–2008 Subjects. Biomarker Insights, 2015, 10, BMI.S20089.	2.5	13
42	Inhaled ozone (O3)-induces changes in serum metabolomic and liver transcriptomic profiles in rats. Toxicology and Applied Pharmacology, 2015, 286, 65-79.	2.8	109
43	Iron diminishes the in vitro biological effect of vanadium. Journal of Inorganic Biochemistry, 2015, 147, 126-133.	3.5	16
44	Metal rich particulate matter impairs acetylcholine-mediated vasorelaxation of microvessels in mice. Particle and Fibre Toxicology, 2015, 12, 14.	6.2	20
45	Particle retention by respiratory epithelial cells is associated with persistent biological effect. Inhalation Toxicology, 2015, 27, 335-341.	1.6	5
46	Progress in Assessing Air Pollutant Risks from In Vitro Exposures: Matching Ozone Dose and Effect in Human Airway Cells. Toxicological Sciences, 2014, 141, 198-205.	3.1	25
47	Biological effects of desert dust in respiratory epithelial cells and a murine model. Inhalation Toxicology, 2014, 26, 299-309.	1.6	39
48	Iron decreases biological effects of ozone exposure. Inhalation Toxicology, 2014, 26, 391-399.	1.6	5
49	β2-Adrenergic agonists augment air pollution–induced IL-6 release and thrombosis. Journal of Clinical Investigation, 2014, 124, 2935-2946.	8.2	106
50	Oxidative Injury Caused by Cigarette Smoking and Air Pollution. Oxidative Stress in Applied Basic Research and Clinical Practice, 2014, , 131-150.	0.4	0
51	Emerging Mechanistic Targets in Lung Injury Induced by Combustion-Generated Particles. Toxicological Sciences, 2013, 132, 253-267.	3.1	49
52	lron accumulates in the lavage and explanted lungs of cystic fibrosis patients. Journal of Cystic Fibrosis, 2013, 12, 390-398.	0.7	60
53	Sequestration of mitochondrial iron by silica particle initiates a biological effect. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L712-L724.	2.9	35
54	Deficiency of α-1-antitrypsin influences systemic iron homeostasis. International Journal of COPD, 2013, 8, 45.	2.3	14

#	Article	IF	CITATIONS
55	Iron, Human Growth, and the Global Epidemic of Obesity. Nutrients, 2013, 5, 4231-4249.	4.1	12
56	NAD(P)H quinone oxidoreductase 1 regulates neutrophil elastase-induced mucous cell metaplasia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L181-L188.	2.9	14
57	Case Report: Supraventricular Arrhythmia after Exposure to Concentrated Ambient Air Pollution Particles. Environmental Health Perspectives, 2012, 120, 275-277.	6.0	7
58	Diesel exhaust particles and airway inflammation. Current Opinion in Pulmonary Medicine, 2012, 18, 144-150.	2.6	109
59	Subchronic Pulmonary Pathology, Iron Overload, and Transcriptional Activity after Libby Amphibole Exposure in Rat Models of Cardiovascular Disease. Environmental Health Perspectives, 2012, 120, 85-91.	6.0	21
60	Exposure to wood smoke particles produces inflammation in healthy volunteers. Occupational and Environmental Medicine, 2012, 69, 170-175.	2.8	113
61	Disruption of Iron Homeostasis in Mesothelial Cells after Talc Pleurodesis. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 80-86.	2.9	9
62	Complications of TNF- \hat{l} ± antagonists and iron homeostasis. Medical Hypotheses, 2012, 78, 33-35.	1.5	3
63	Composition of Air Pollution Particles and Oxidative Stress in Cells, Tissues, and Living Systems. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2012, 15, 1-21.	6.5	411
64	Anemia and global iron fortification and supplementation. Annals of Hematology, 2012, 91, 957-958.	1.8	5
65	Acute phase response, inflammation and metabolic syndrome biomarkers of Libby asbestos exposure. Toxicology and Applied Pharmacology, 2012, 260, 105-114.	2.8	18
66	Controlled human exposures to diesel exhaust. Swiss Medical Weekly, 2012, 142, w13597.	1.6	40
67	The role of iron in Libby amphibole-induced acute lung injury and inflammation. Inhalation Toxicology, 2011, 23, 313-323.	1.6	16
68	Gadolinium exposure disrupts iron homeostasis in cultured cells. Journal of Biological Inorganic Chemistry, 2011, 16, 567-575.	2.6	16
69	Hepcidin expression in human airway epithelial cells is regulated by interferon-Î ³ . Respiratory Research, 2011, 12, 100.	3.6	41
70	Lung injury after cigarette smoking is particle related. International Journal of COPD, 2011, 6, 191.	2.3	24
71	The role of cardiovascular disease-associated iron overload in Libby amphibole-induced acute pulmonary injury and inflammation. Inhalation Toxicology, 2011, 23, 129-141.	1.6	7
72	Particulate Matter-Induced Lung Inflammation Increases Systemic Levels of PAI-1 and Activates Coagulation Through Distinct Mechanisms. PLoS ONE, 2011, 6, e18525.	2.5	90

#	Article	IF	CITATIONS
73	Deficiency in the divalent metal transporter 1 increases bleomycin-induced lung injury. BioMetals, 2010, 23, 657-667.	4.1	6
74	MRT letter: Autoâ€fluorescence by human alveolar macrophages after in vitro exposure to air pollution particles. Microscopy Research and Technique, 2010, 73, 579-582.	2.2	6
75	Metals in air pollution particles decrease whole-blood coagulation time. Inhalation Toxicology, 2010, 22, 621-626.	1.6	35
76	Effects of metal compounds with distinct physicochemical properties on iron homeostasis and antibacterial activity in the lungs: chromium and vanadium. Inhalation Toxicology, 2010, 22, 169-178.	1.6	31
77	The critical role of intracellular zinc in adenosine A2 receptor activation induced cardioprotection against reperfusion injury. Journal of Molecular and Cellular Cardiology, 2010, 49, 41-47.	1.9	39
78	Pulmonary Oxidative Stress, Inflammation, and Dysregulated Iron Homeostasis in Rat Models of Cardiovascular Disease. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2010, 73, 641-656.	2.3	32
79	Diesel Exhaust Particles Activate the Matrix-Metalloproteinase-1 Gene in Human Bronchial Epithelia in a β-Arrestin–Dependent Manner via Activation of RAS. Environmental Health Perspectives, 2009, 117, 400-409.	6.0	39
80	Mitochondrial Complex III-generated Oxidants Activate ASK1 and JNK to Induce Alveolar Epithelial Cell Death following Exposure to Particulate Matter Air Pollution. Journal of Biological Chemistry, 2009, 284, 2176-2186.	3.4	117
81	NAD(P)H Quinone Oxidoreductase 1 Is Essential for Ozone-Induced Oxidative Stress in Mice and Humans. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 107-113.	2.9	37
82	Neutrophil Elastase Increases Airway Epithelial Nonheme Iron Levels. Clinical and Translational Science, 2009, 2, 333-339.	3.1	26
83	Zinc transport by respiratory epithelial cells and interaction with iron homeostasis. BioMetals, 2009, 22, 803-815.	4.1	21
84	Disruption of iron homeostasis and lung disease. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 731-739.	2.4	101
85	Controlled human exposures to ambient pollutant particles in susceptible populations. Environmental Health, 2009, 8, 33.	4.0	19
86	Mass spectrometric analysis of biomarkers and dilution markers in exhaled breath condensate reveals elevated purines in asthma and cystic fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L987-L993.	2.9	73
87	Iron Accumulation and Expression of Iron-Related Proteins Following Murine Exposure to Crocidolite. Journal of Environmental Pathology, Toxicology and Oncology, 2009, 28, 153-162.	1.2	15
88	Iron accumulation in bronchial epithelial cells is dependent on concurrent sodium transport. BioMetals, 2008, 21, 571-580.	4.1	12
89	Iron homeostasis and oxidative stress in idiopathic pulmonary alveolar proteinosis: a case-control study. Respiratory Research, 2008, 9, 10.	3.6	26
90	Iron Homeostasis in the Lung Following Asbestos Exposure. Antioxidants and Redox Signaling, 2008, 10, 371-378.	5.4	55

#	Article	IF	CITATIONS
91	Carbon Monoxide Reversibly Alters Iron Homeostasis and Respiratory Epithelial Cell Function. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 715-723.	2.9	16
92	Mechanism of asthmatic exacerbation by ambient air pollution particles. Expert Review of Respiratory Medicine, 2008, 2, 109-118.	2.5	18
93	Particulate Matter in Cigarette Smoke Alters Iron Homeostasis to Produce a Biological Effect. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 1130-1138.	5.6	173
94	Lung injury after ozone exposure is iron dependent. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L134-L143.	2.9	41
95	A Comparison of Studies on the Effects of Controlled Exposure to Fine, Coarse and Ultrafine Ambient Particulate Matter from a Single Location. Inhalation Toxicology, 2007, 19, 29-32.	1.6	67
96	Biological Effects of Vanadium in the Lung. ACS Symposium Series, 2007, , 240-248.	0.5	0
97	Pulmonary Immunotoxic Potentials of Metals Are Governed by Select Physicochemical Properties: Vanadium Agents. Journal of Immunotoxicology, 2007, 4, 49-60.	1.7	27
98	Ambient particulate matter induces alveolar epithelial cell cycle arrest: Role of G1 cyclins. FEBS Letters, 2007, 581, 5315-5320.	2.8	29
99	Ambient particulate matter accelerates coagulation via an IL-6–dependent pathway. Journal of Clinical Investigation, 2007, 117, 2952-2961.	8.2	256
100	ASBESTOS-INDUCED ACTIVATION OF CELL SIGNALING PATHWAYS IN HUMAN BRONCHIAL EPITHELIAL CELLS. Experimental Lung Research, 2006, 32, 229-243.	1.2	13
101	Exercise-Induced Pulmonary Hemorrhage After Running a Marathon. Lung, 2006, 184, 331-333.	3.3	22
102	Airborne Particulate Matter Inhibits Alveolar Fluid Reabsorption in Mice via Oxidant Generation. American Journal of Respiratory Cell and Molecular Biology, 2006, 34, 670-676.	2.9	30
103	Oxidant Generation Promotes Iron Sequestration in BEAS-2B Cells Exposed to Asbestos. American Journal of Respiratory Cell and Molecular Biology, 2006, 34, 286-292.	2.9	24
104	Hepcidin expression and iron transport in alveolar macrophages. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L417-L425.	2.9	112
105	Duodenal cytochrome b: a novel ferrireductase in airway epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L272-L280.	2.9	24
106	Pulmonary Fibrosis and Ferruginous Bodies Associated with Exposure to Synthetic Fibers. Toxicologic Pathology, 2006, 34, 723-729.	1.8	20
107	Vascular Effects of Ambient Pollutant Particles and Metals. Current Vascular Pharmacology, 2006, 4, 199-203.	1.7	71

Particle-Associated Metals and Oxidative Stress in Signaling. , 2006, , 161-181.

3

ANDREW J GHIO

#	Article	IF	CITATIONS
109	Iron homeostasis in the lung. Biological Research, 2006, 39, 67-77.	3.4	39
110	Colchicine Decreases Airway Hyperreactivity Afrer Phosgene Exposure. Inhalation Toxicology, 2005, 17, 277-285.	1.6	11
111	Apical location of ferroportin 1 in airway epithelia and its role in iron detoxification in the lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L14-L23.	2.9	37
112	TNF, IFN-γ, and endotoxin increase expression of DMT1 in bronchial epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L24-L33.	2.9	48
113	Divalent metal transporter-1 decreases metal-related injury in the lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L460-L467.	2.9	43
114	Lung Surfactant Gelation Induced by Epithelial Cells Exposed to Air Pollution or Oxidative Stress. American Journal of Respiratory Cell and Molecular Biology, 2005, 33, 161-168.	2.9	39
115	Disruption of Iron Homeostasis as a Mechanism of Biologic Effect by Ambient Air Pollution Particles. Inhalation Toxicology, 2005, 17, 709-716.	1.6	64
116	The association between serum ferritin and uric acid in humans. Free Radical Research, 2005, 39, 337-342.	3.3	42
117	Disruption of Iron Homeostasis in the Lungs of Transplant Patients. Journal of Heart and Lung Transplantation, 2005, 24, 1821-1827.	0.6	20
118	Exposure to Concentrated Ambient Particles (CAPs): A Review. Inhalation Toxicology, 2004, 16, 53-59.	1.6	104
119	Biological Effects of Utah Valley Ambient Air Particles in Humans: A Review. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2004, 17, 157-164.	1.2	84
120	Review: Ferruginous Bodies: Implications in the Mechanism of Fiber and Particle Toxicity. Toxicologic Pathology, 2004, 32, 643-649.	1.8	78
121	The iron cycle and oxidative stress in the lung. Free Radical Biology and Medicine, 2004, 36, 850-857.	2.9	117
122	Exposure to Concentrated Ambient Air Particles Alters Hematologic Indices in Humans. Inhalation Toxicology, 2003, 15, 1465-1478.	1.6	153
123	The Role of Soluble Components in Ambient Fine Particles-Induced Changes in Human Lungs and Blood. Inhalation Toxicology, 2003, 15, 327-342.	1.6	95
124	Particulate Matter Induces Alveolar Epithelial Cell DNA Damage and Apoptosis. American Journal of Respiratory Cell and Molecular Biology, 2003, 29, 180-187.	2.9	179
125	Superoxide-Dependent Iron Uptake. American Journal of Respiratory Cell and Molecular Biology, 2003, 29, 653-660.	2.9	26
126	Iron and iron-related proteins in the lower respiratory tract of patients with acute respiratory distress syndrome. Critical Care Medicine, 2003, 31, 395-400.	0.9	78

#	Article	IF	CITATIONS
127	DMT1 expression is increased in the lungs of hypotransferrinemic mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 284, L938-L944.	2.9	24
128	Regulation of Reticuloendothelial Iron Transporter MTP1 (Slc11a3) by Inflammation. Journal of Biological Chemistry, 2002, 277, 39786-39791.	3.4	173
129	Iron regulates xanthine oxidase activity in the lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 283, L563-L572.	2.9	38
130	Iron increases expression of iron-export protein MTP1 in lung cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 283, L932-L939.	2.9	73
131	Biologic effects of oil fly ash Environmental Health Perspectives, 2002, 110, 89-94.	6.0	166
132	Iron uptake and Nramp2/DMT1/DCT1 in human bronchial epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 282, L987-L995.	2.9	68
133	Oxidative stress activates anion exchange protein 2 and AP-1 in airway epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 283, L791-L798.	2.9	26
134	Air Pollution Particles Mediated Oxidative DNA Base Damage in a Cell Free System and in Human Airway Epithelial Cells in Relation to Particulate Metal Content and Bioreactivity. Chemical Research in Toxicology, 2001, 14, 879-887.	3.3	183
135	Vascular release of nonheme iron in perfused rabbit lungs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 280, L474-L481.	2.9	12
136	Effect of Ozone on Diesel Exhaust Particle Toxicity in Rat Lung. Toxicology and Applied Pharmacology, 2000, 168, 140-148.	2.8	80
137	Diminished injury in hypotransferrinemic mice after exposure to a metal-rich particle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 278, L1051-L1061.	2.9	18
138	INCREASED EXPRESSION OF CYCLOOXYGENASE 2 MEDIATES OIL FLY ASH-INDUCED LUNG INJURY. Experimental Lung Research, 2000, 26, 57-69.	1.2	24
139	Accumulation of Iron in the Rat Lung after Tracheal Instillation of Diesel Particles. Toxicologic Pathology, 2000, 28, 619-627.	1.8	47
140	Respiratory epithelial cells demonstrate lactoferrin receptors that increase after metal exposure. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L933-L940.	2.9	34
141	Resistance of hypotransferrinemic mice to hyperoxia-induced lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L1214-L1223.	2.9	22
142	Metals and Air Pollution Particles. , 1999, , 635-651.		33
143	Cellular and Biochemical Response of the Human Lung after Intrapulmonary Instillation of Ferric Oxide Particles. American Journal of Respiratory Cell and Molecular Biology, 1999, 20, 631-642.	2.9	46
144	METALS ASSOCIATED WITH BOTH THE WATER-SOLUBLE AND INSOLUBLE FRACTIONS OF AN AMBIENT AIR POLLUTION PARTICLE CATALYZE AN OXIDATIVE STRESS. Inhalation Toxicology, 1999, 11, 37-49.	1.6	186

ANDREW J GHIO

#	ARTICLE Acetatoehyde (CH3CHO) production in rodent lung after exposure to metal-rich particles11The	IF	CITATIONS
145	research described in this article has been reviewed by the National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Agency nor does mention of trade names or commercial products constitute endorsement or recommendation for	2.9	28
146	use Free Radical Biology and Medicine, 1999, 26, 1569-1577. Metal Storage and Transport Proteins Increase After Exposure of the Rat Lung to an Air Pollution Particle. Toxicologic Pathology, 1998, 26, 388-394.	1.8	29
147	Copper-dependent Inflammation and Nuclear Factor- \hat{I}° B Activation by Particulate Air Pollution. American Journal of Respiratory Cell and Molecular Biology, 1998, 19, 366-378.	2.9	173
148	Bronchoscopy in Healthy Volunteers. Journal of Bronchology, 1998, 5, 185-194.	0.2	31
149	Disruption of normal iron homeostasis after bronchial instillation of an iron-containing particle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 274, L396-L403.	2.9	21
150	Metal-dependent expression of ferritin and lactoferrin by respiratory epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 274, L728-L736.	2.9	30
151	Iron Accumulation in Lung Allografts After Transplantation*. Chest, 1997, 112, 435-439.	0.8	34
152	Ferritin Expression after <i>In Vitro</i> Exposures of Human Alveolar Macrophages to Silica Is Iron-dependent. American Journal of Respiratory Cell and Molecular Biology, 1997, 17, 533-540.	2.9	18
153	<i>In Vivo</i> Evidence of Free Radical Formation in the Rat Lung after Exposure to an Emission Source Air Pollution Particle. Chemical Research in Toxicology, 1997, 10, 1104-1108.	3.3	165
154	Non-heme (Fe3+) in the lung increases with age in both humans and rats. Translational Research, 1997, 129, 53-61.	2.3	39
155	Cytokine Production by Human Airway Epithelial Cells after Exposure to an Air Pollution Particle Is Metal-Dependent. Toxicology and Applied Pharmacology, 1997, 146, 180-188.	2.8	412
156	Accumulation of Iron in the Rat Lung after Intratracheal Instillation of Coal Dust. Journal of Occupational and Environmental Hygiene, 1996, 11, 980-985.	0.4	0
157	Oxidant Generation and Lung Injury after Particulate Air Pollutant Exposure Increase with the Concentrations of Associated Metals. Inhalation Toxicology, 1996, 8, 457-477.	1.6	234
158	Humic-Like Substances in Air Pollution Particulates Correlate with Concentrations of Transition Metals and Oxidant Generation. Inhalation Toxicology, 1996, 8, 479-494.	1.6	99
159	Nitration of Tyrosine by Hydrogen Peroxide and Nitrite. Free Radical Research, 1995, 23, 537-547.	3.3	58
160	Lavage Phospholipid Concentration after Silica Instillation in the Rat Is Associated with Complexed [Fe3+] on the Dust Surface. American Journal of Respiratory Cell and Molecular Biology, 1993, 8, 403-407.	2.9	19
161	Colchicine Inhibits Elevations in Both Alveolar-Capiliary Membrane Permeability and Lavage Surfactant After Exposure of the Rat to Phosgene. Inhalation Toxicology, 1992, 4, 383-392.	1.6	2
162	To the editor: Survey of reference equations used to predict pulmonary function in children. Pediatric Pulmonology, 1990, 8, 126-129.	2.0	1