Andrew J Ghio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7421334/publications.pdf

Version: 2024-02-01

162 papers

8,012 citations

45 h-index 83 g-index

164 all docs

164 docs citations

164 times ranked 8298 citing authors

#	Article	IF	CITATIONS
1	Cytokine Production by Human Airway Epithelial Cells after Exposure to an Air Pollution Particle Is Metal-Dependent. Toxicology and Applied Pharmacology, 1997, 146, 180-188.	2.8	412
2	Composition of Air Pollution Particles and Oxidative Stress in Cells, Tissues, and Living Systems. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2012, 15, 1-21.	6.5	411
3	Ambient particulate matter accelerates coagulation via an IL-6–dependent pathway. Journal of Clinical Investigation, 2007, 117, 2952-2961.	8.2	256
4	Oxidant Generation and Lung Injury after Particulate Air Pollutant Exposure Increase with the Concentrations of Associated Metals. Inhalation Toxicology, 1996, 8, 457-477.	1.6	234
5	METALS ASSOCIATED WITH BOTH THE WATER-SOLUBLE AND INSOLUBLE FRACTIONS OF AN AMBIENT AIR POLLUTION PARTICLE CATALYZE AN OXIDATIVE STRESS. Inhalation Toxicology, 1999, 11, 37-49.	1.6	186
6	Air Pollution Particles Mediated Oxidative DNA Base Damage in a Cell Free System and in Human Airway Epithelial Cells in Relation to Particulate Metal Content and Bioreactivity. Chemical Research in Toxicology, 2001, 14, 879-887.	3.3	183
7	Inhalational exposure to particulate matter air pollution alters the composition of the gut microbiome. Environmental Pollution, 2018, 240, 817-830.	7.5	181
8	Particulate Matter Induces Alveolar Epithelial Cell DNA Damage and Apoptosis. American Journal of Respiratory Cell and Molecular Biology, 2003, 29, 180-187.	2.9	179
9	Copper-dependent Inflammation and Nuclear Factor- \hat{P} B Activation by Particulate Air Pollution. American Journal of Respiratory Cell and Molecular Biology, 1998, 19, 366-378.	2.9	173
10	Regulation of Reticuloendothelial Iron Transporter MTP1 (Slc11a3) by Inflammation. Journal of Biological Chemistry, 2002, 277, 39786-39791.	3. 4	173
11	Particulate Matter in Cigarette Smoke Alters Iron Homeostasis to Produce a Biological Effect. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 1130-1138.	5. 6	173
12	Biologic effects of oil fly ash Environmental Health Perspectives, 2002, 110, 89-94.	6.0	166
13	<i>In Vivo</i> Evidence of Free Radical Formation in the Rat Lung after Exposure to an Emission Source Air Pollution Particle. Chemical Research in Toxicology, 1997, 10, 1104-1108.	3.3	165
14	Ozone Exposure Increases Circulating Stress Hormones and Lipid Metabolites in Humans. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1382-1391.	5.6	159
15	Exposure to Concentrated Ambient Air Particles Alters Hematologic Indices in Humans. Inhalation Toxicology, 2003, 15, 1465-1478.	1.6	153
16	COPD: balancing oxidants and antioxidants. International Journal of COPD, 2015, 10, 261.	2.3	149
17	The iron cycle and oxidative stress in the lung. Free Radical Biology and Medicine, 2004, 36, 850-857.	2.9	117
18	Mitochondrial Complex III-generated Oxidants Activate ASK1 and JNK to Induce Alveolar Epithelial Cell Death following Exposure to Particulate Matter Air Pollution. Journal of Biological Chemistry, 2009, 284, 2176-2186.	3.4	117

#	Article	IF	CITATIONS
19	Exposure to wood smoke particles produces inflammation in healthy volunteers. Occupational and Environmental Medicine, 2012, 69, 170-175.	2.8	113
20	Hepcidin expression and iron transport in alveolar macrophages. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L417-L425.	2.9	112
21	Diesel exhaust particles and airway inflammation. Current Opinion in Pulmonary Medicine, 2012, 18, 144-150.	2.6	109
22	Inhaled ozone (O3)-induces changes in serum metabolomic and liver transcriptomic profiles in rats. Toxicology and Applied Pharmacology, 2015, 286, 65-79.	2.8	109
23	î²2-Adrenergic agonists augment air pollution–induced IL-6 release and thrombosis. Journal of Clinical Investigation, 2014, 124, 2935-2946.	8.2	106
24	Exposure to Concentrated Ambient Particles (CAPs): A Review. Inhalation Toxicology, 2004, 16, 53-59.	1.6	104
25	Disruption of iron homeostasis and lung disease. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 731-739.	2.4	101
26	Humic-Like Substances in Air Pollution Particulates Correlate with Concentrations of Transition Metals and Oxidant Generation. Inhalation Toxicology, 1996, 8, 479-494.	1.6	99
27	The Role of Soluble Components in Ambient Fine Particles-Induced Changes in Human Lungs and Blood. Inhalation Toxicology, 2003, 15, 327-342.	1.6	95
28	Particulate Matter-Induced Lung Inflammation Increases Systemic Levels of PAI-1 and Activates Coagulation Through Distinct Mechanisms. PLoS ONE, 2011, 6, e18525.	2.5	90
29	Biological Effects of Utah Valley Ambient Air Particles in Humans: A Review. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2004, 17, 157-164.	1.2	84
30	Effect of Ozone on Diesel Exhaust Particle Toxicity in Rat Lung. Toxicology and Applied Pharmacology, 2000, 168, 140-148.	2.8	80
31	Iron and iron-related proteins in the lower respiratory tract of patients with acute respiratory distress syndrome. Critical Care Medicine, 2003, 31, 395-400.	0.9	78
32	Review: Ferruginous Bodies: Implications in the Mechanism of Fiber and Particle Toxicity. Toxicologic Pathology, 2004, 32, 643-649.	1.8	78
33	Metformin Targets Mitochondrial Electron Transport to Reduce Air-Pollution-Induced Thrombosis. Cell Metabolism, 2019, 29, 335-347.e5.	16.2	75
34	Iron increases expression of iron-export protein MTP1 in lung cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 283, L932-L939.	2.9	73
35	Mass spectrometric analysis of biomarkers and dilution markers in exhaled breath condensate reveals elevated purines in asthma and cystic fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L987-L993.	2.9	73
36	Vascular Effects of Ambient Pollutant Particles and Metals. Current Vascular Pharmacology, 2006, 4, 199-203.	1.7	71

#	Article	IF	CITATIONS
37	Iron uptake and Nramp2/DMT1/DCT1 in human bronchial epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 282, L987-L995.	2.9	68
38	A Comparison of Studies on the Effects of Controlled Exposure to Fine, Coarse and Ultrafine Ambient Particulate Matter from a Single Location. Inhalation Toxicology, 2007, 19, 29-32.	1.6	67
39	Disruption of Iron Homeostasis as a Mechanism of Biologic Effect by Ambient Air Pollution Particles. Inhalation Toxicology, 2005, 17, 709-716.	1.6	64
40	Acute Ozone-Induced Pulmonary and Systemic Metabolic Effects Are Diminished in Adrenalectomized Rats. Toxicological Sciences, 2016, 150, 312-322.	3.1	64
41	Iron accumulates in the lavage and explanted lungs of cystic fibrosis patients. Journal of Cystic Fibrosis, 2013, 12, 390-398.	0.7	60
42	Nitration of Tyrosine by Hydrogen Peroxide and Nitrite. Free Radical Research, 1995, 23, 537-547.	3.3	58
43	Iron Homeostasis in the Lung Following Asbestos Exposure. Antioxidants and Redox Signaling, 2008, 10, 371-378.	5.4	55
44	Factors associated with self-reported health: implications for screening level community-based health and environmental studies. BMC Public Health, 2016, 16, 640.	2.9	51
45	Emerging Mechanistic Targets in Lung Injury Induced by Combustion-Generated Particles. Toxicological Sciences, 2013, 132, 253-267.	3.1	49
46	TNF, IFN- \hat{l}^3 , and endotoxin increase expression of DMT1 in bronchial epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L24-L33.	2.9	48
47	Accumulation of Iron in the Rat Lung after Tracheal Instillation of Diesel Particles. Toxicologic Pathology, 2000, 28, 619-627.	1.8	47
48	Cellular and Biochemical Response of the Human Lung after Intrapulmonary Instillation of Ferric Oxide Particles. American Journal of Respiratory Cell and Molecular Biology, 1999, 20, 631-642.	2.9	46
49	Divalent metal transporter-1 decreases metal-related injury in the lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L460-L467.	2.9	43
50	The association between serum ferritin and uric acid in humans. Free Radical Research, 2005, 39, 337-342.	3.3	42
51	Lung injury after ozone exposure is iron dependent. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L134-L143.	2.9	41
52	Hepcidin expression in human airway epithelial cells is regulated by interferon-13. Respiratory Research, 2011, 12, 100.	3.6	41
53	Controlled human exposures to diesel exhaust. Swiss Medical Weekly, 2012, 142, w13597.	1.6	40
54	Non-heme (Fe3+) in the lung increases with age in both humans and rats. Translational Research, 1997, 129, 53-61.	2.3	39

#	Article	IF	CITATIONS
55	Lung Surfactant Gelation Induced by Epithelial Cells Exposed to Air Pollution or Oxidative Stress. American Journal of Respiratory Cell and Molecular Biology, 2005, 33, 161-168.	2.9	39
56	Diesel Exhaust Particles Activate the Matrix-Metalloproteinase-1 Gene in Human Bronchial Epithelia in a β-Arrestin–Dependent Manner via Activation of RAS. Environmental Health Perspectives, 2009, 117, 400-409.	6.0	39
57	The critical role of intracellular zinc in adenosine A2 receptor activation induced cardioprotection against reperfusion injury. Journal of Molecular and Cellular Cardiology, 2010, 49, 41-47.	1.9	39
58	Biological effects of desert dust in respiratory epithelial cells and a murine model. Inhalation Toxicology, 2014, 26, 299-309.	1.6	39
59	Iron homeostasis in the lung. Biological Research, 2006, 39, 67-77.	3.4	39
60	Iron regulates xanthine oxidase activity in the lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 283, L563-L572.	2.9	38
61	Apical location of ferroportin 1 in airway epithelia and its role in iron detoxification in the lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L14-L23.	2.9	37
62	NAD(P)H Quinone Oxidoreductase 1 Is Essential for Ozone-Induced Oxidative Stress in Mice and Humans. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 107-113.	2.9	37
63	Wood Smoke Particle Sequesters Cell Iron to Impact a Biological Effect. Chemical Research in Toxicology, 2015, 28, 2104-2111.	3.3	37
64	Metals in air pollution particles decrease whole-blood coagulation time. Inhalation Toxicology, 2010, 22, 621-626.	1.6	35
65	Sequestration of mitochondrial iron by silica particle initiates a biological effect. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L712-L724.	2.9	35
66	Iron Accumulation in Lung Allografts After Transplantation*. Chest, 1997, 112, 435-439.	0.8	34
67	Respiratory epithelial cells demonstrate lactoferrin receptors that increase after metal exposure. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L933-L940.	2.9	34
68	Metals and Air Pollution Particles. , 1999, , 635-651.		33
69	Pulmonary Oxidative Stress, Inflammation, and Dysregulated Iron Homeostasis in Rat Models of Cardiovascular Disease. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2010, 73, 641-656.	2.3	32
70	Bronchoscopy in Healthy Volunteers. Journal of Bronchology, 1998, 5, 185-194.	0.2	31
71	Effects of metal compounds with distinct physicochemical properties on iron homeostasis and antibacterial activity in the lungs: chromium and vanadium. Inhalation Toxicology, 2010, 22, 169-178.	1.6	31
72	Metal-dependent expression of ferritin and lactoferrin by respiratory epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 274, L728-L736.	2.9	30

#	Article	IF	Citations
73	Airborne Particulate Matter Inhibits Alveolar Fluid Reabsorption in Mice via Oxidant Generation. American Journal of Respiratory Cell and Molecular Biology, 2006, 34, 670-676.	2.9	30
74	Metal Storage and Transport Proteins Increase After Exposure of the Rat Lung to an Air Pollution Particle. Toxicologic Pathology, 1998, 26, 388-394.	1.8	29
75	Ambient particulate matter induces alveolar epithelial cell cycle arrest: Role of G1 cyclins. FEBS Letters, 2007, 581, 5315-5320. Acetaldehyde (CH3CHO) production in rodent lung after exposure to metal-rich particles11The	2.8	29
76	research described in this article has been reviewed by the National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Agency nor does mention of trade names or commercial products constitute endorsement or recommendation for	2.9	28
77	use Free Radical Biology and Medicine, 1999, 26, 1569-1577. Pulmonary Immunotoxic Potentials of Metals Are Governed by Select Physicochemical Properties: Vanadium Agents. Journal of Immunotoxicology, 2007, 4, 49-60.	1.7	27
78	Oxidative stress activates anion exchange protein 2 and AP-1 in airway epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 283, L791-L798.	2.9	26
79	Superoxide-Dependent Iron Uptake. American Journal of Respiratory Cell and Molecular Biology, 2003, 29, 653-660.	2.9	26
80	Iron homeostasis and oxidative stress in idiopathic pulmonary alveolar proteinosis: a case-control study. Respiratory Research, 2008, 9, 10.	3.6	26
81	Neutrophil Elastase Increases Airway Epithelial Nonheme Iron Levels. Clinical and Translational Science, 2009, 2, 333-339.	3.1	26
82	Progress in Assessing Air Pollutant Risks from In Vitro Exposures: Matching Ozone Dose and Effect in Human Airway Cells. Toxicological Sciences, 2014, 141, 198-205.	3.1	25
83	INCREASED EXPRESSION OF CYCLOOXYGENASE 2 MEDIATES OIL FLY ASH-INDUCED LUNG INJURY. Experimental Lung Research, 2000, 26, 57-69.	1.2	24
84	DMT1 expression is increased in the lungs of hypotransferrinemic mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 284, L938-L944.	2.9	24
85	Oxidant Generation Promotes Iron Sequestration in BEAS-2B Cells Exposed to Asbestos. American Journal of Respiratory Cell and Molecular Biology, 2006, 34, 286-292.	2.9	24
86	Duodenal cytochrome b: a novel ferrireductase in airway epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L272-L280.	2.9	24
87	Lung injury after cigarette smoking is particle related. International Journal of COPD, 2011, 6, 191.	2.3	24
88	Resistance of hypotransferrinemic mice to hyperoxia-induced lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L1214-L1223.	2.9	22
89	Exercise-Induced Pulmonary Hemorrhage After Running a Marathon. Lung, 2006, 184, 331-333.	3.3	22
90	Article Commentary: Effects of Environmental Pollutants on Cellular Iron Homeostasis and Ultimate Links to Human Disease. Environmental Health Insights, 2016, 10, EHI.S36225.	1.7	22

#	Article	IF	CITATIONS
91	The toxicology of air pollution predicts its epidemiology. Inhalation Toxicology, 2018, 30, 327-334.	1.6	22
92	Disruption of normal iron homeostasis after bronchial instillation of an iron-containing particle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 274, L396-L403.	2.9	21
93	Zinc transport by respiratory epithelial cells and interaction with iron homeostasis. BioMetals, 2009, 22, 803-815.	4.1	21
94	Subchronic Pulmonary Pathology, Iron Overload, and Transcriptional Activity after Libby Amphibole Exposure in Rat Models of Cardiovascular Disease. Environmental Health Perspectives, 2012, 120, 85-91.	6.0	21
95	Indices of iron homeostasis correlate with airway obstruction in an NHANES III cohort. International Journal of COPD, 2017, Volume 12, 2075-2084.	2.3	21
96	Air pollutants disrupt iron homeostasis to impact oxidant generation, biological effects, and tissue injury. Free Radical Biology and Medicine, 2020, 151, 38-55.	2.9	21
97	Disruption of Iron Homeostasis in the Lungs of Transplant Patients. Journal of Heart and Lung Transplantation, 2005, 24, 1821-1827.	0.6	20
98	Pulmonary Fibrosis and Ferruginous Bodies Associated with Exposure to Synthetic Fibers. Toxicologic Pathology, 2006, 34, 723-729.	1.8	20
99	Metal rich particulate matter impairs acetylcholine-mediated vasorelaxation of microvessels in mice. Particle and Fibre Toxicology, 2015, 12, 14.	6.2	20
100	Air pollution particles and iron homeostasis. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2816-2825.	2.4	20
101	Lavage Phospholipid Concentration after Silica Instillation in the Rat Is Associated with Complexed [Fe3+] on the Dust Surface. American Journal of Respiratory Cell and Molecular Biology, 1993, 8, 403-407.	2.9	19
102	Controlled human exposures to ambient pollutant particles in susceptible populations. Environmental Health, 2009, 8, 33.	4.0	19
103	Macrophages from the upper and lower human respiratory tract are metabolically distinct. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L752-L764.	2.9	19
104	Ferritin Expression after <i>In Vitro</i> Exposures of Human Alveolar Macrophages to Silica Is Iron-dependent. American Journal of Respiratory Cell and Molecular Biology, 1997, 17, 533-540.	2.9	18
105	Diminished injury in hypotransferrinemic mice after exposure to a metal-rich particle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 278, L1051-L1061.	2.9	18
106	Mechanism of asthmatic exacerbation by ambient air pollution particles. Expert Review of Respiratory Medicine, 2008, 2, 109-118.	2.5	18
107	Acute phase response, inflammation and metabolic syndrome biomarkers of Libby asbestos exposure. Toxicology and Applied Pharmacology, 2012, 260, 105-114.	2.8	18
108	Iron chelation may harm patients with COVID-19. European Journal of Clinical Pharmacology, 2021, 77, 265-266.	1.9	17

#	Article	IF	CITATIONS
109	Carbon Monoxide Reversibly Alters Iron Homeostasis and Respiratory Epithelial Cell Function. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 715-723.	2.9	16
110	The role of iron in Libby amphibole-induced acute lung injury and inflammation. Inhalation Toxicology, 2011, 23, 313-323.	1.6	16
111	Gadolinium exposure disrupts iron homeostasis in cultured cells. Journal of Biological Inorganic Chemistry, 2011, 16, 567-575.	2.6	16
112	Iron diminishes the in vitro biological effect of vanadium. Journal of Inorganic Biochemistry, 2015, 147, 126-133.	3.5	16
113	Iron Accumulation and Expression of Iron-Related Proteins Following Murine Exposure to Crocidolite. Journal of Environmental Pathology, Toxicology and Oncology, 2009, 28, 153-162.	1.2	15
114	NAD(P)H quinone oxidoreductase 1 regulates neutrophil elastase-induced mucous cell metaplasia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L181-L188.	2.9	14
115	Deficiency of & amp; alpha; -1-antitrypsin influences systemic iron homeostasis. International Journal of COPD, 2013, 8, 45.	2.3	14
116	ASBESTOS-INDUCED ACTIVATION OF CELL SIGNALING PATHWAYS IN HUMAN BRONCHIAL EPITHELIAL CELLS. Experimental Lung Research, 2006, 32, 229-243.	1.2	13
117	Perchlorate Exposure is Associated with Oxidative Stress and Indicators of Serum Iron Homeostasis among NHANES 2005–2008 Subjects. Biomarker Insights, 2015, 10, BMI.S20089.	2.5	13
118	Perls' Prussian Blue Stains of Lung Tissue, Bronchoalveolar Lavage, and Sputum. Journal of Environmental Pathology, Toxicology and Oncology, 2021, 40, 1-15.	1.2	13
119	Vascular release of nonheme iron in perfused rabbit lungs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 280, L474-L481.	2.9	12
120	Iron accumulation in bronchial epithelial cells is dependent on concurrent sodium transport. BioMetals, 2008, 21, 571-580.	4.1	12
121	Iron, Human Growth, and the Global Epidemic of Obesity. Nutrients, 2013, 5, 4231-4249.	4.1	12
122	Transition and post-transition metals in exhaled breath condensate. Journal of Breath Research, 2018, 12, 027112.	3.0	12
123	Human lung injury following exposure to humic substances and humic-like substances. Environmental Geochemistry and Health, 2018, 40, 571-581.	3.4	12
124	Silica Exposure Differentially Modulates Autoimmunity in Lupus Strains and Autoantibody Transgenic Mice. Frontiers in Immunology, 2019, 10, 2336.	4.8	12
125	Colchicine Decreases Airway Hyperreactivity Afrer Phosgene Exposure. Inhalation Toxicology, 2005, 17, 277-285.	1.6	11
126	Heme oxygenase activity increases after exercise in healthy volunteers. Free Radical Research, 2018, 52, 267-272.	3.3	11

#	Article	IF	Citations
127	Quartz Disrupts Iron Homeostasis in Alveolar Macrophages To Impact a Pro-Inflammatory Effect. Chemical Research in Toxicology, 2019, 32, 1737-1747.	3.3	11
128	Asthma as a disruption in iron homeostasis. BioMetals, 2016, 29, 751-779.	4.1	10
129	Disruption of Iron Homeostasis in Mesothelial Cells after Talc Pleurodesis. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 80-86.	2.9	9
130	The biological effect of asbestos exposure is dependent on changes in iron homeostasis. Inhalation Toxicology, 2016, 28, 698-705.	1.6	8
131	Effects of albumin, transferrin and humic-like substances on iron-mediated OH radical formation in human lung fluids. Free Radical Biology and Medicine, 2021, 165, 79-87.	2.9	8
132	Mucus and mucus flake composition and abundance reflect inflammatory and infection status in cystic fibrosis. Journal of Cystic Fibrosis, 2022, 21, 959-966.	0.7	8
133	The role of cardiovascular disease-associated iron overload in Libby amphibole-induced acute pulmonary injury and inflammation. Inhalation Toxicology, 2011, 23, 129-141.	1.6	7
134	Case Report: Supraventricular Arrhythmia after Exposure to Concentrated Ambient Air Pollution Particles. Environmental Health Perspectives, 2012, 120, 275-277.	6.0	7
135	Iron and Iron-Related Proteins in Asbestosis. Journal of Environmental Pathology, Toxicology and Oncology, 2015, 34, 277-285.	1.2	7
136	Ozone Reacts With Carbon Black to Produce a Fulvic Acid-Like Substance and Increase an Inflammatory Effect. Toxicologic Pathology, 2020, 48, 887-898.	1.8	7
137	A Fulvic Acid-like Substance Participates in the Pro-inflammatory Effects of Cigarette Smoke and Wood Smoke Particles. Chemical Research in Toxicology, 2020, 33, 999-1009.	3.3	7
138	Iron and zinc homeostases in female rats with physically active and sedentary lifestyles. BioMetals, 2021, 34, 97-105.	4.1	7
139	Deficiency in the divalent metal transporter 1 increases bleomycin-induced lung injury. BioMetals, 2010, 23, 657-667.	4.1	6
140	MRT letter: Autoâ€fluorescence by human alveolar macrophages after in vitro exposure to air pollution particles. Microscopy Research and Technique, 2010, 73, 579-582.	2.2	6
141	Anemia and global iron fortification and supplementation. Annals of Hematology, 2012, 91, 957-958.	1.8	5
142	Iron decreases biological effects of ozone exposure. Inhalation Toxicology, 2014, 26, 391-399.	1.6	5
143	Particle retention by respiratory epithelial cells is associated with persistent biological effect. Inhalation Toxicology, 2015, 27, 335-341.	1.6	5
144	Oleic acid and derivatives affect human endothelial cell mitochondrial function and vasoactive mediator production. Lipids in Health and Disease, 2020, 19, 128.	3.0	5

#	Article	IF	Citations
145	Outcomes of Idiopathic Pulmonary Fibrosis Improve with Obesity: A Rural Appalachian Experience. Southern Medical Journal, 2021, 114, 424-431.	0.7	5
146	Application of diagnostic criteria for non-tuberculous mycobacterial disease to a case series of mycobacterial-positive isolates. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 2019, 17, 100133.	1.3	4
147	Complications of TNF-α antagonists and iron homeostasis. Medical Hypotheses, 2012, 78, 33-35.	1.5	3
148	Heme Oxygenase Activity Correlates with Serum Indices of Iron Homeostasis in Healthy Nonsmokers. Biomarker Insights, 2016, 11, BMI.S36226.	2.5	3
149	Particle-Associated Metals and Oxidative Stress in Signaling. , 2006, , 161-181.		3
150	Cigarette Smoke Particle-Induced Lung Injury and Iron Homeostasis. International Journal of COPD, 2022, Volume 17, 117-140.	2.3	3
151	Colchicine Inhibits Elevations in Both Alveolar-Capiliary Membrane Permeability and Lavage Surfactant After Exposure of the Rat to Phosgene. Inhalation Toxicology, 1992, 4, 383-392.	1.6	2
152	Iron concentration in exhaled breath condensate decreases in ever-smokers and COPD patients. Journal of Breath Research, 2018, 12, 046009.	3.0	2
153	Diacetyl exposure disrupts iron homeostasis in animals and cells. Inhalation Toxicology, 2021, 33, 268-274.	1.6	2
154	Demystifying idiopathic interstitial pneumonia: time for more etiology-focused nomenclature in interstitial lung disease. Expert Review of Respiratory Medicine, 2022, 16, 235-245.	2.5	2
155	To the editor: Survey of reference equations used to predict pulmonary function in children. Pediatric Pulmonology, 1990, 8, 126-129.	2.0	1
156	12-hydroxy oleic acid impairs endothelium-dependent vasorelaxation. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2019, 82, 383-386.	2.3	1
157	Letter to the editor: iron, apoptosis, and ferroptosis. Apoptosis: an International Journal on Programmed Cell Death, 2020, 25, 605-606.	4.9	1
158	Accumulation of Iron in the Rat Lung after Intratracheal Instillation of Coal Dust. Journal of Occupational and Environmental Hygiene, 1996, 11, 980-985.	0.4	0
159	Biological Effects of Vanadium in the Lung. ACS Symposium Series, 2007, , 240-248.	0.5	0
160	Pleural plaques in smoking-associated fibrosis and pulmonary asbestosis. International Journal of COPD, 2015, 10, 869.	2.3	0
161	Preface: Special Issue on Air Pollution. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2769-2770.	2.4	0
162	Oxidative Injury Caused by Cigarette Smoking and Air Pollution. Oxidative Stress in Applied Basic Research and Clinical Practice, 2014, , 131-150.	0.4	0