Michael Krieg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7420757/publications.pdf

Version: 2024-02-01

331670 477307 2,817 28 21 29 h-index citations g-index papers 40 40 40 4145 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mechanosensitive body–brain interactions in Caenorhabditis elegans. Current Opinion in Neurobiology, 2022, 75, 102574.	4.2	4
2	Direct Force Measurements of Subcellular Mechanics in Confinement using Optical Tweezers. Journal of Visualized Experiments, 2021, , .	0.3	7
3	An asymmetric mechanical code ciphers curvature-dependent proprioceptor activity. Science Advances, 2021, 7, eabg4617.	10.3	17
4	The nucleus measures shape changes for cellular proprioception to control dynamic cell behavior. Science, 2020, 370, .	12.6	232
5	Cortical anchoring of the microtubule cytoskeleton is essential for neuron polarity. ELife, 2020, 9, .	6.0	26
6	Direction Selectivity in Drosophila Proprioceptors Requires the Mechanosensory Channel Tmc. Current Biology, 2019, 29, 945-956.e3.	3.9	58
7	Rationally designed azobenzene photoswitches for efficient two-photon neuronal excitation. Nature Communications, 2019, 10, 907.	12.8	86
8	Neuronal stretch reception – Making sense of the mechanosense. Experimental Cell Research, 2019, 378, 104-112.	2.6	6
9	Atomic force microscopy-based mechanobiology. Nature Reviews Physics, 2019, 1, 41-57.	26.6	500
10	Using a Microfluidics Device for Mechanical Stimulation and High Resolution Imaging of C. elegans . Journal of Visualized Experiments, 2018, , .	0.3	12
11	Pneumatic stimulation of C. elegans mechanoreceptor neurons in a microfluidic trap. Lab on A Chip, 2017, 17, 1116-1127.	6.0	55
12	Genetic defects in \hat{l}^2 -spectrin and tau sensitize C. elegans axons to movement-induced damage via torque-tension coupling. ELife, 2017, 6, .	6.0	93
13	The tubulin repertoire of <i>Caenorhabditis elegans</i> sensory neurons and its contextâ€'dependent role in process outgrowth. Molecular Biology of the Cell, 2016, 27, 3717-3728.	2.1	47
14	Feeling Force: Physical and Physiological Principles Enabling Sensory Mechanotransduction. Annual Review of Cell and Developmental Biology, 2015, 31, 347-371.	9.4	128
15	Mechanical systems biology of <i>C. elegans</i> touch sensation. BioEssays, 2015, 37, 335-344.	2.5	34
16	A Force Balance Can Explain Local and Global Cell Movements during Early Zebrafish Development. Biophysical Journal, 2015, 109, 407-414.	0.5	9
17	FBN-1, a fibrillin-related protein, is required for resistance of the epidermis to mechanical deformation during C. elegans embryogenesis. ELife, 2015, 4, .	6.0	52
18	Mechanical control of the sense of touch by \hat{l}^2 -spectrin. Nature Cell Biology, 2014, 16, 224-233.	10.3	173

#	Article	IF	CITATION
19	Phospholipids that Contain Polyunsaturated Fatty Acids Enhance Neuronal Cell Mechanics and Touch Sensation. Cell Reports, 2014, 6, 70-80.	6.4	98
20	Assay for characterizing the recovery of vertebrate cells for adhesion measurements by single ell force spectroscopy. FEBS Letters, 2014, 588, 3639-3648.	2.8	28
21	Movement Directionality in Collective Migration of Germ Layer Progenitors. Current Biology, 2010, 20, 161-169.	3.9	111
22	Electrostatic Cell-Surface Repulsion Initiates Lumen Formation in Developing Blood Vessels. Current Biology, 2010, 20, 2003-2009.	3.9	124
23	Control of Directed Cell Migration In Vivo by Membrane-to-Cortex Attachment. PLoS Biology, 2010, 8, e1000544.	5.6	231
24	New frontiers in atomic force microscopy: analyzing interactions from single-molecules to cells. Current Opinion in Biotechnology, 2009, 20, 4-13.	6.6	72
25	A Bond for a Lifetime: Employing Membrane Nanotubes from Living Cells to Determine Receptor–Ligand Kinetics. Angewandte Chemie - International Edition, 2008, 47, 9775-9777.	13.8	70
26	Locating ligand binding and activation of a single antiporter. EMBO Reports, 2005, 6, 668-674.	4.5	85
27	Measuring cell adhesion forces of primary gastrulating cells from zebrafish using atomic force microscopy. Journal of Cell Science, 2005, 118, 4199-4206.	2.0	161
28	Wnt11 Functions in Gastrulation by Controlling Cell Cohesion through Rab5c and E-Cadherin. Developmental Cell, 2005, 9, 555-564.	7.0	273