Hongseok Yun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7418934/publications.pdf

Version: 2024-02-01

201674 214800 2,287 49 27 47 citations h-index g-index papers 49 49 49 3612 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy. Nature Communications, 2016, 7, 11441.	12.8	162
2	Photocatalytic Hydrogen Evolution from Substoichiometric Colloidal WO _{3–<i>x</i>} Nanowires. ACS Energy Letters, 2018, 3, 1904-1910.	17.4	145
3	Multidimensional Design of Anisotropic Polymer Particles from Solventâ€Evaporative Emulsion. Advanced Functional Materials, 2018, 28, 1802961.	14.9	140
4	Mechanisms for High Selectivity in the Hydrodeoxygenation of 5-Hydroxymethylfurfural over PtCo Nanocrystals. ACS Catalysis, 2016, 6, 4095-4104.	11.2	124
5	Morphological Evolution of Block Copolymer Particles: Effect of Solvent Evaporation Rate on Particle Shape and Morphology. ACS Nano, 2017, 11, 2133-2142.	14.6	123
6	Designing Tripodal and Triangular Gadolinium Oxide Nanoplates and Self-Assembled Nanofibrils as Potential Multimodal Bioimaging Probes. ACS Nano, 2013, 7, 2850-2859.	14.6	115
7	Base metal-Pt alloys: A general route to high selectivity and stability in the production of biofuels from HMF. Applied Catalysis B: Environmental, 2016, 199, 439-446.	20.2	100
8	Shape and Color Switchable Block Copolymer Particles by Temperature and pH Dual Responses. ACS Nano, 2019, 13, 4230-4237.	14.6	76
9	High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture. Nature Nanotechnology, 2017, 12, 228-232.	31.5	75
10	Comparison of HMF hydrodeoxygenation over different metal catalysts in a continuous flow reactor. Applied Catalysis A: General, 2015, 508, 86-93.	4.3	68
11	A Technology Overview of the PowerChip Development Program. IEEE Transactions on Power Electronics, 2013, 28, 4182-4201.	7.9	67
12	Highly durable fuel cell catalysts using crosslinkable block copolymer-based carbon supports with ultralow Pt loadings. Energy and Environmental Science, 2020, 13, 4921-4929.	30.8	61
13	Photoswitchable Surfactant-Driven Reversible Shape- and Color-Changing Block Copolymer Particles. Journal of the American Chemical Society, 2021, 143, 13333-13341.	13.7	55
14	The H2 Pressure Dependence of Hydrodeoxygenation Selectivities for Furfural Over Pt/C Catalysts. Catalysis Letters, 2016, 146, 711-717.	2.6	54
15	Colorimetric Thermometer from Graphene Oxide Platform Integrated with Red, Green, and Blue Emitting, Responsive Block Copolymers. Chemistry of Materials, 2016, 28, 3446-3453.	6.7	51
16	Development of Shape-Tuned, Monodisperse Block Copolymer Particles through Solvent-Mediated Particle Restructuring. Chemistry of Materials, 2019, 31, 1066-1074.	6.7	51
17	Hydrogen Sensors Based on MoS ₂ Hollow Architectures Assembled by Pickering Emulsion. ACS Nano, 2020, 14, 9652-9661.	14.6	47
18	Size- and Composition-Dependent Radio Frequency Magnetic Permeability of Iron Oxide Nanocrystals. ACS Nano, 2014, 8, 12323-12337.	14.6	44

#	Article	IF	CITATIONS
19	Synthesis and Size-Selective Precipitation of Monodisperse Nonstoichiometric M _{<i>x</i>} Fe _{3–<i>x</i>} O ₄ (M = Mn, Co) Nanocrystals and Their DC and AC Magnetic Properties. Chemistry of Materials, 2016, 28, 480-489.	6.7	42
20	Surface Plasmon Aided Ethanol Dehydrogenation Using Ag–Ni Binary Nanoparticles. ACS Catalysis, 2017, 7, 2294-2302.	11.2	42
21	Hierarchical Materials Design by Pattern Transfer Printing of Self-Assembled Binary Nanocrystal Superlattices. Nano Letters, 2017, 17, 1387-1394.	9.1	40
22	Symmetry Transitions of Polymer-Grafted Nanoparticles: Grafting Density Effect. Chemistry of Materials, 2019, 31, 5264-5273.	6.7	40
23	Regioregular- <i>block</i> -Regiorandom Poly(3-hexylthiophene) Copolymers for Mechanically Robust and High-Performance Thin-Film Transistors. Macromolecules, 2019, 52, 7721-7730.	4.8	40
24	Softness- and Size-Dependent Packing Symmetries of Polymer-Grafted Nanoparticles. ACS Nano, 2020, 14, 9644-9651.	14.6	40
25	High-performance, recyclable ultrafiltration membranes from P4VP-assisted dispersion of flame-resistive boron nitride nanotubes. Journal of Membrane Science, 2018, 551, 172-179.	8.2	38
26	Fluorescent Block Copolymerâ€MoS ₂ Nanocomposites for Realâ€Time Photothermal Heating and Imaging. Advanced Functional Materials, 2017, 27, 1604403.	14.9	36
27	Mechanistic Study on the Shape Transition of Block Copolymer Particles Driven by Length-Controlled Nanorod Surfactants. Chemistry of Materials, 2018, 30, 8669-8678.	6.7	36
28	Chain-Length-Dependent Self-Assembly Behaviors of Discrete Conjugated Oligo(3-hexylthiophene). Chemistry of Materials, 2020, 32, 3597-3607.	6.7	29
29	Ultra‣ow Pt Loaded Porous Carbon Microparticles with Controlled Channel Structure for Highâ€Performance Fuel Cell Catalysts. Advanced Energy Materials, 2021, 11, 2102970.	19.5	29
30	Entropy-Driven Assembly of Nanoparticles within Emulsion-Evaporative Block Copolymer Particles: Crusted, Seeded, and Alternate-Layered Onions. Chemistry of Materials, 2020, 32, 7036-7043.	6.7	26
31	Solution-Assembled Blends of Regioregularity-Controlled Polythiophenes for Coexistence of Mechanical Resilience and Electronic Performance. ACS Applied Materials & Interfaces, 2017, 9, 14120-14128.	8.0	25
32	Shape control of nanostructured cone-shaped particles by tuning the blend morphology of A- <i>b</i> B diblock copolymers and C-type copolymers within emulsion droplets. Polymer Chemistry, 2019, 10, 2415-2423.	3.9	24
33	Interfacial Instability-Driven Morphological Transition of Prolate Block Copolymer Particles: Striped Football, Larva to Sphere. Macromolecules, 2020, 53, 7198-7206.	4.8	24
34	Lens-Shaped Carbon Particles with Perpendicularly-Oriented Channels for High-Performance Proton Exchange Membrane Fuel Cells. ACS Nano, 2022, 16, 2988-2996.	14.6	24
35	Impact of size control of graphene oxide nanosheets for enhancing electrical and mechanical properties of carbon nanotube–polymer composites. RSC Advances, 2017, 7, 30221-30228.	3. 6	23
36	Influence of Drying Conditions on Device Performances of Antisolvent-Assisted Roll-to-Roll Slot Die-Coated Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 7611-7621.	5.1	22

#	Article	lF	CITATIONS
37	Effect of Polymer Ligand Conformation on the Self-Assembly of Block Copolymers and Polymer-Grafted Nanoparticles within an Evaporative Emulsion. Macromolecules, 2021, 54, 3084-3092.	4.8	21
38	Modulating Regioregularity of Poly(3-hexylthiophene)-based Amphiphilic Block Copolymers To Control Solution Assembly from Nanowires to Micelles. Chemistry of Materials, 2018, 30, 7912-7921.	6.7	20
39	Bench-Scale Synthesis and Characterization of Biodegradable Aliphatic–Aromatic Random Copolymers with 1,4-Cyclohexanedimethanol Units Toward Sustainable Packaging Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 4734-4743.	6.7	16
40	Fluorescence Switchable Block Copolymer Particles with Doubly Alternate‣ayered Nanoparticle Arrays. Small, 2021, 17, e2101222.	10.0	16
41	3D Nanofabrication via Chemoâ€Mechanical Transformation of Nanocrystal/Bulk Heterostructures. Advanced Materials, 2018, 30, e1800233.	21.0	15
42	Light-Active, Reversibly Shape-Shifting Block Copolymer Particles Using Photo-switchable Au Nanoparticle Surfactants. Chemistry of Materials, 2021, 33, 9769-9779.	6.7	14
43	Alternate current magnetic property characterization of nonstoichiometric zinc ferrite nanocrystals for inductor fabrication via a solution based process. Journal of Applied Physics, 2016, 119, .	2.5	13
44	Colloidal Self-Assembly of Inorganic Nanocrystals into Superlattice Thin-Films and Multiscale Nanostructures. Nanomaterials, 2019, 9, 1243.	4.1	10
45	The dendritic effect and magnetic permeability in dendron coated nickel and manganese zinc ferrite nanoparticles. Nanoscale, 2017, 9, 13922-13928.	5.6	9
46	Effect of Polymeric <i>In Situ</i> Stabilizers on Dispersion Homogeneity of Nanofillers and Thermal Conductivity Enhancement of Composites. Langmuir, 2020, 36, 5563-5570.	3.5	9
47	Rapid solvo-microwave annealing for optimizing ordered nanostructures and crystallization of regioregular polythiophene-based block copolymers. Polymer Chemistry, 2019, 10, 4962-4972.	3.9	6
48	Construction and Applications of Genome-Scalein silico Metabolic Models for Strain Improvement. , 0, , 355-385.		0
49	Photothermal Imaging: Fluorescent Block Copolymerâ€MoS ₂ Nanocomposites for Realâ€Time Photothermal Heating and Imaging (Adv. Funct. Mater. 5/2017). Advanced Functional Materials, 2017, 27,	14.9	O