Galina Klimchitskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7417966/publications.pdf

Version: 2024-02-01

253 papers 11,323 citations

61 h-index 96 g-index

258 all docs

258 docs citations

258 times ranked

1564 citing authors

#	Article	lF	Citations
1	Theory-experiment comparison for the Casimir force between metallic test bodies: A spatially nonlocal dielectric response. Physical Review A, 2022, 105, .	2.5	13
2	Editorial to the Special Issue "Advances in the Physics of Stars—In Memory of Prof. Yuri N. Gnedin― Universe, 2022, 8, 239.	2.5	0
3	Casimir-Polder attraction and repulsion between nanoparticles and graphene in out-of-thermal-equilibrium conditions. Physical Review B, 2022, 105, .	3.2	6
4	Casimir-Polder Interaction of an Atom with a Cavity Wall Made of Phase-Change Material out of Thermal Equilibrium. Atoms, 2021, 9, 4.	1.6	7
5	Constraints on Theoretical Predictions beyond the Standard Model from the Casimir Effect and Some Other Tabletop Physics. Universe, 2021, 7, 47.	2.5	9
6	Measurement of the Casimir Force between 0.2 and 8 \hat{l} /4m: Experimental Procedures and Comparison with Theory. Universe, 2021, 7, 93.	2.5	39
7	Casimir entropy and nonlocal response functions to the off-shell quantum fluctuations. Physical Review D, 2021, 103 , .	4.7	12
8	Demonstration of an Unusual Thermal Effect in the Casimir Force from Graphene. Physical Review Letters, 2021, 126, 206802.	7.8	25
9	Casimir pressure in peptide films on metallic substrates: Change of sign via graphene coating. Physical Review B, 2021, 103, .	3.2	4
10	Editorial to the Special Issue "The Casimir Effect: From a Laboratory Table to the Universe― Universe, 2021, 7, 266.	2.5	0
11	Experimental and theoretical investigation of the thermal effect in the Casimir interaction from graphene. Physical Review B, 2021, 104 , .	3.2	24
12	Dark Matter Axions, Non-Newtonian Gravity and Constraints on Them from Recent Measurements of the Casimir Force in the Micrometer Separation Range. Universe, 2021, 7, 343.	2.5	9
13	Casimir effect for magnetic media: Spatially nonlocal response to the off-shell quantum fluctuations. Physical Review D, 2021, 104, .	4.7	12
14	Casimir and Casimir-Polder Forces in Graphene Systems: Quantum Field Theoretical Description and Thermodynamics. Universe, 2020, 6, 150.	2.5	21
15	The State of the Art in Constraining Axion-to-Nucleon Coupling and Non-Newtonian Gravity from Laboratory Experiments. Universe, 2020, 6, 147.	2.5	14
16	Effect of increased stability of peptide-based coatings in the Casimir regime via nanoparticle doping. Physical Review B, 2020, 102, .	3.2	7
17	An alternative response to the off-shell quantum fluctuations: a step forward in resolution of the Casimir puzzle. European Physical Journal C, 2020, 80, 1 .	3.9	23
18	Quantum field theoretical description of the Casimir effect between two real graphene sheets and thermodynamics. Physical Review D, 2020, 102 , .	4.7	15

#	Article	IF	Citations
19	Nonequilibrium effects in the Casimir force between two similar metallic plates kept at different temperatures. Physical Review A, 2020, 101, .	2.5	8
20	Casimir effect in optoelectronic devices using ferrofluids. Journal of Electronic Science and Technology, 2020, 18, 100024.	3.6	7
21	The Casimir-Polder interaction of an atom and real graphene sheet: Verification of the Nernst heat theorem. Modern Physics Letters A, 2020, 35, 2040004.	1.2	6
22	Nernst heat theorem for an atom interacting with graphene: Dirac model with nonzero energy gap and chemical potential. Physical Review D, 2020, 101, .	4.7	15
23	Constraints on non-Newtonian gravity and axionlike particles from measuring the Casimir force in nanometer separation range. Physical Review D, 2020, 101, .	4.7	16
24	Casimir force, causality, and the Gurzhi model. Physical Review B, 2020, 101, .	3.2	3
25	Recent measurements of the Casimir force: Comparison between experiment and theory. Modern Physics Letters A, 2020, 35, 2040007.	1.2	13
26	Casimir repulsion though a water-based ferrofluid. Modern Physics Letters A, 2020, 35, 2040016.	1.2	6
27	Effect of agglomeration of magnetic nanoparticles on the Casimir pressure through a ferrofluid. Physical Review B, 2019, 100, .	3.2	8
28	Examining the Casimir puzzle with an upgraded AFM-based technique and advanced surface cleaning. Physical Review B, 2019, 100, .	3.2	36
29	Casimir pressure between metallic plates out of thermal equilibrium: Proposed test for the relaxation properties of free electrons. Physical Review A, 2019, 100, .	2.5	19
30	Dispersion Forces between Metal and Dielectric Plates Separated by a Magnetic Fluid. Technical Physics, 2019, 64, 1260-1266.	0.7	5
31	Impact of magnetic nanoparticles on the Casimir pressure in three-layer systems. Physical Review B, 2019, 99, .	3.2	20
32	Whether an Enormously Large Energy Density of the Quantum Vacuum Is Catastrophic. Symmetry, 2019, 11, 314.	2.2	9
33	Prospects for Searching Thermal Effects, Non-Newtonian Gravity and Axion-Like Particles: Cannex Test of the Quantum Vacuum. Symmetry, 2019, 11, 407.	2.2	24
34	Fluctuation-induced free energy of thin peptide films. Physical Review E, 2019, 99, 022410.	2.1	19
35	Reflectance of graphene-coated dielectric plates in the framework of Dirac model: joint action of energy gap and chemical potential. Journal of Physics Condensed Matter, 2019, 31, 505003.	1.8	2
36	Precision measurements of the gradient of the Casimir force between ultraclean metallic surfaces at larger separations. Physical Review A, 2019, 100, .	2.5	35

3

#	Article	IF	Citations
37	Reducing detrimental electrostatic effects in Casimir-force measurements and Casimir-force-based microdevices. Physical Review A, 2018, 97, .	2.5	36
38	Kramers-Kronig relations and causality conditions for graphene in the framework of the Dirac model. Physical Review D, 2018, 97, .	4.7	14
39	Nonperturbative theory of atom-surface interaction: corrections at short separations. Journal of Physics Condensed Matter, 2018, 30, 055003.	1.8	7
40	Influence of the chemical potential on the Casimir-Polder interaction between an atom and gapped graphene or a graphene-coated substrate. Physical Review A, 2018, 97, .	2.5	32
41	Impact of Magnetic Particles on Dispersion Forces in Ferrofluid-Based Microdevices. , 2018, , .		7
42	Contribution of Electromagnetic Fluctuations to the Free Energy of Protein Films. , 2018, , .		4
43	Low-temperature behavior of the Casimir-Polder free energy and entropy for an atom interacting with graphene. Physical Review A, 2018, 98, .	2.5	13
44	Graphene may help to solve the Casimir conundrum in indium tin oxide systems. Physical Review B, 2018, 98, .	3.2	8
45	Impact of chemical potential on the reflectance of graphene in the infrared and microwave domains. Physical Review A, 2018, 98, .	2.5	15
46	Optical Chopper Driven by the Casimir Force. Physical Review Applied, 2018, 10, .	3.8	16
47	Reflective properties of graphene for optical and near-infrared wavelength range. , 2018, , .		0
48	Maximum reflectance and transmittance of films coated with gapped graphene in the context of the Dirac model. Physical Review A, 2018, 97, .	2.5	4
49	The Casimir-Operated Microdevice for Application in Optical Networks. Lecture Notes in Computer Science, 2018, , 613-623.	1.3	0
50	Optical properties of dielectric plates coated with gapped graphene. Physical Review B, 2017, 95, .	3.2	13
51	Casimir free energy of dielectric films: classical limit, low-temperature behavior and control. Journal of Physics Condensed Matter, 2017, 29, 275701.	1.8	22
52	Low-temperature behavior of the Casimir free energy and entropy of metallic films. Physical Review A, 2017, 95, .	2.5	33
53	Thermal effect in the Casimir force for graphene and graphene-coated substrates: Impact of nonzero mass gap and chemical potential. Physical Review B, 2017, 96, .	3.2	20
54	Universal experimental test for the role of free charge carriers in the thermal Casimir effect within a micrometer separation range. Physical Review A, 2017, 95, .	2.5	9

#	Article	IF	CITATIONS
55	How to observe the giant thermal effect in the Casimir force for graphene systems. Physical Review A, 2017, 96, .	2.5	22
56	Constraints on axionlike particles and non-Newtonian gravity from measuring the difference of Casimir forces. Physical Review D, 2017, 95, .	4.7	23
57	Recent breakthrough and outlook in constraining the non-Newtonian gravity and axion-like particles from Casimir physics. European Physical Journal C, 2017, 77, 1.	3.9	17
58	Conductivity of graphene in the framework of Dirac model: Interplay between nonzero mass gap and chemical potential. Physical Review B, 2017, 96, .	3.2	21
59	Comment on "Lifshitz-Matsubara sum formula for the Casimir pressure between magnetic metallic mirrors― Physical Review E, 2016, 94, 026101.	2.1	6
60	Nernst heat theorem for the thermal Casimir interaction between two graphene sheets. Physical Review A, 2016, 94, .	2. 5	19
61	Constraining axion coupling constants from measuring the Casimir interaction between polarized test bodies. Physical Review D, 2016, 94, .	4.7	12
62	Casimir free energy and pressure for magnetic metal films. Physical Review B, 2016, 94, .	3.2	16
63	Reflectivity properties of graphene with a nonzero mass-gap parameter. Physical Review A, 2016, 93, .	2.5	21
64	Conductivity of pure graphene: Theoretical approach using the polarization tensor. Physical Review B, 2016, 93, .	3.2	28
65	Characteristic properties of the Casimir free energy for metal films deposited on metallic plates. Physical Review A, 2016, 93, .	2.5	12
66	Quantum electrodynamic approach to the conductivity of gapped graphene. Physical Review B, 2016, 94,	3.2	20
67	Quantum field theory of the Casimir force for graphene. International Journal of Modern Physics A, 2016, 31, 1641026.	1.5	13
68	Quantum Field Theoretical Approach to the Electrical Conductivity of Graphene. Lecture Notes in Computer Science, 2016, , 699-707.	1.3	0
69	Casimir free energy of metallic films: Discriminating between Drude and plasma model approaches. Physical Review A, 2015, 92, .	2.5	22
70	Origin of large thermal effect in the Casimir interaction between two graphene sheets. Physical Review B, 2015, 91, .	3.2	41
71	Casimir and van der Waals energy of anisotropic atomically thin metallic films. Physical Review B, 2015, 92, .	3.2	13
72	Theory of reflectivity properties of graphene-coated material plates. Physical Review B, 2015, 92, .	3.2	27

#	Article	IF	CITATIONS
73	Improved constraints on the coupling constants of axion-like particles to nucleons from recent Casimir-less experiment. European Physical Journal C, 2015, 75, 1.	3.9	25
74	Comparison of hydrodynamic model of graphene with recent experiment on measuring the Casimir interaction. Physical Review B, 2015, 91, .	3.2	24
75	Analytic results for the Casimir free energy between ferromagnetic metals. Physical Review A, 2015, 91,	2.5	28
76	Quantum field theoretical description for the reflectivity of graphene. Physical Review D, 2015, 91, .	4.7	79
77	Constraints on the axion and corrections to newtonian gravity from the Casimir effect. Gravitation and Cosmology, 2015, 21, 1-12.	1.1	10
78	Casimir entropy for magnetodielectrics. Journal of Physics Condensed Matter, 2015, 27, 214007.	1.8	23
79	Classical Casimir-Polder force between polarizable microparticles and thin films including graphene. Physical Review A, 2014, 89, .	2,5	24
80	Two approaches for describing the Casimir interaction in graphene: Density-density correlation function versus polarization tensor. Physical Review B, 2014, 89, .	3.2	64
81	Classical limit of the Casimir interaction for thin films with applications to graphene. Physical Review B, 2014, 89, .	3.2	23
82	Constraints on axion-nucleon coupling constants from measuring the Casimir force between corrugated surfaces. Physical Review D, 2014, 90, .	4.7	22
83	Stronger constraints on an axion from measuring the Casimir interaction by means of a dynamic atomic force microscope. Physical Review D, 2014, 89, .	4.7	19
84	Theory of the Casimir interaction from graphene-coated substrates using the polarization tensor and comparison with experiment. Physical Review B, 2014, 89, .	3.2	74
85	Impact of graphene coating on the atom-plate interaction. Physical Review A, 2014, 89, .	2.5	29
86	Constraints on the parameters of an axion from measurements of the thermal Casimir-Polder force. Physical Review D, 2014, 89, .	4.7	25
87	Reflectivity Properties of Graphene and Graphene-Coated Substrates. Lecture Notes in Computer Science, 2014, , 451-458.	1.3	5
88	Observability of thermal effects in the Casimir interaction from graphene-coated substrates. Physical Review A, 2014, 89, .	2.5	47
89	New constraints on Yukawa-type corrections to Newtonian gravity at short separations. Gravitation and Cosmology, 2014, 20, 3-9.	1.1	15
90	Constraining axion–nucleon coupling constants from measurements of effective Casimir pressure by means of micromachined oscillator. European Physical Journal C, 2014, 74, 1.	3.9	25

#	Article	IF	CITATIONS
91	Measuring the Casimir force gradient from graphene on a SiO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn></mml:mn></mml:msub></mml:math> substrate. Physical Review B, 2013, 87, .	3.2	97
92	Casimir interaction between two magnetic metals in comparison with nonmagnetic test bodies. Physical Review B, 2013, 88, .	3.2	102
93	Demonstration of the Casimir Force between Ferromagnetic Surfaces of a Ni-Coated Sphere and a Ni-Coated Plate. Physical Review Letters, 2013, 110, 137401.	7.8	121
94	Constraints on corrections to Newtonian gravity from two recent measurements of the Casimir interaction between metallic surfaces. Physical Review D, 2013, 87, .	4.7	48
95	Casimir interaction at liquid nitrogen temperature: Comparison between experiment and theory. Physical Review B, 2013, 88, .	3.2	19
96	van der Waals and Casimir interactions between two graphene sheets. Physical Review B, 2013, 87, .	3.2	72
97	Creation of quasiparticles in graphene by a time-dependent electric field. Physical Review D, 2013, 87, .	4.7	39
98	Constraints on non-Newtonian gravity and light elementary particles from measurements of the Casimir force by means of a dynamic atomic force microscope. Physical Review D, 2012, 86, .	4.7	14
99	Gradient of the Casimir force between Au surfaces of a sphere and a plate measured using an atomic force microscope in a frequency-shift technique. Physical Review B, 2012, 85, .	3.2	144
100	Modifying the Casimir force between indium tin oxide film and Au sphere. Physical Review B, 2012, 85, .	3.2	62
101	COMPARISON BETWEEN EXPERIMENT AND THEORY FOR THE THERMAL CASIMIR FORCE. International Journal of Modern Physics A, 2012, 27, 1260012.	1.5	24
102	OBSERVATION OF REDUCTION IN CASIMIR FORCE WITHOUT CHANGE OF DIELECTRIC PERMITTIVITY. International Journal of Modern Physics A, 2012, 27, 1260001.	1.5	12
103	NEW CONSTRAINTS ON YUKAWA-TYPE INTERACTIONS FROM THE CASIMIR EFFECT. International Journal of Modern Physics A, 2012, 27, 1260015.	1.5	10
104	OBSERVATION OF REDUCTION IN CASIMIR FORCE WITHOUT CHANGE OF DIELECTRIC PERMITTIVITY. International Journal of Modern Physics Conference Series, 2012, 14, 1-15.	0.7	1
105	PRECISION MEASUREMENT OF THE CASIMIR FORCE FOR Au USING A DYNAMIC AFM. International Journal of Modern Physics Conference Series, 2012, 14, 270-280.	0.7	3
106	CASIMIR PRESSURE IN MDS-STRUCTURES. International Journal of Modern Physics Conference Series, 2012, 14, 566-575.	0.7	1
107	COMPARISON BETWEEN EXPERIMENT AND THEORY FOR THE THERMAL CASIMIR FORCE. International Journal of Modern Physics Conference Series, 2012, 14, 155-170.	0.7	2
108	NEW CONSTRAINTS ON YUKAWA-TYPE INTERACTIONS FROM THE CASIMIR EFFECT. International Journal of Modern Physics Conference Series, 2012, 14, 200-214.	0.7	1

#	Article	IF	CITATIONS
109	Comment on "Casimir Force andInÂSituSurface Potential Measurements on Nanomembranes― Physical Review Letters, 2012, 109, 199701.	7.8	16
110	How to modify the van der Waals and Casimir forces without change of the dielectric permittivity. Journal of Physics Condensed Matter, 2012, 24, 424202.	1.8	9
111	Thermal Casimir effect in the interaction of graphene with dielectrics and metals. Physical Review B, 2012, 86, .	3.2	74
112	Thermal Casimir-Polder interaction of different atoms with graphene. Physical Review A, 2012, 86, .	2.5	86
113	Measurement of the gradient of the Casimir force between a nonmagnetic gold sphere and a magnetic nickel plate. Physical Review B, 2012, 85, .	3.2	86
114	Constraints on non-Newtonian gravity from measuring the Casimir force in a configuration with nanoscale rectangular corrugations. Physical Review D, 2011, 83, .	4.7	36
115	Thermal Casimir effect in closed Friedmann universe revisited. Physical Review D, 2011, 83, .	4.7	30
116	DISPERSION INTERACTION OF ATOMS WITH SINGLE-WALLED CARBON NANOTUBES DESCRIBED BY THE DIRAC MODEL. International Journal of Modern Physics Conference Series, 2011, 03, 555-563.	0.7	2
117	CAPACITANCE MEASUREMENTS AND ELECTROSTATIC CALIBRATIONS IN EXPERIMENTS MEASURING THE CASIMIR FORCE. International Journal of Modern Physics Conference Series, 2011, 03, 527-540.	0.7	1
118	WHAT IS CREDIBLE AND WHAT IS INCREDIBLE IN THE MEASUREMENTS OF THE CASIMIR FORCE. International Journal of Modern Physics Conference Series, 2011, 03, 541-554.	0.7	2
119	OBSERVATION OF THE THERMAL CASIMIR FORCE IS OPEN TO QUESTION. International Journal of Modern Physics Conference Series, 2011, 03, 515-526.	0.7	4
120	Casimir force pressure on the insulating layer in metal-insulator-semiconductor structures. Physics of the Solid State, 2011, 53, 1921-1926.	0.6	1
121	Exact Casimir–Polder potential between a particle and an ideal metal cylindrical shell and the proximity force approximation. European Physical Journal C, 2011, 71, 1.	3.9	22
122	Casimir force between a microfabricated elliptic cylinder and a plate. Physical Review A, 2011, 84, .	2.5	11
123	Comment on "Temperature dependence of the Casimir force for lossy bulk media― Physical Review A, 2011, 84, .	2.5	2
124	Impact of surface imperfections on the Casimir force for lenses of centimeter-size curvature radii. Physical Review B, 2011, 83, .	3.2	51
125	Reduction of the Casimir Force from Indium Tin Oxide Film by UV Treatment. Physical Review Letters, 2011, 107, 090403.	7.8	84
126	OBSERVATION OF THE THERMAL CASIMIR FORCE IS OPEN TO QUESTION. International Journal of Modern Physics A, 2011, 26, 3918-3929.	1.5	32

#	Article	IF	CITATIONS
127	CONTROL OF THE CASIMIR FORCE USING SEMICONDUCTOR TEST BODIES. International Journal of Modern Physics B, 2011, 25, 171-230.	2.0	47
128	DISPERSION INTERACTION OF ATOMS WITH SINGLE-WALLED CARBON NANOTUBES DESCRIBED BY THE DIRAC MODEL. International Journal of Modern Physics A, 2011, 26, 3958-3966.	1.5	3
129	WHAT IS CREDIBLE AND WHAT IS INCREDIBLE IN THE MEASUREMENTS OF THE CASIMIR FORCE. International Journal of Modern Physics A, 2011, 26, 3944-3957.	1.5	6
130	CAPACITANCE MEASUREMENTS AND ELECTROSTATIC CALIBRATIONS IN EXPERIMENTS MEASURING THE CASIMIR FORCE. International Journal of Modern Physics A, 2011, 26, 3930-3943.	1.5	7
131	Normal and lateral Casimir force: Advances and prospects. Journal of Physics: Conference Series, 2010, 258, 012001.	0.4	2
132	Authors question book reviewer's fairness. Physics Today, 2010, 63, 12-13.	0.3	0
133	Modulation of the Casimir force by laser pulses: Influence of oxide films on the silicon surface. Physics of the Solid State, 2010, 52, 2033-2038.	0.6	1
134	On the validity of constraints on light elementary particles andÂextra-dimensional physics from the Casimir effect. European Physical Journal C, 2010, 68, 223-226.	3.9	22
135	Comparison of the experimental data for the Casimir pressure with the Lifshitz theory at zero temperature. Physical Review B, 2010, 81, .	3.2	7
136	Possibility of measuring the thermal Casimir interaction between a plate and a cylinder attached to a micromachined oscillator. Physical Review A, 2010, 82, .	2.5	16
137	Possibility of measuring thermal effects in the Casimir force. Physical Review A, 2010, 82, .	2.5	19
138	Thermal Casimir interaction between two magnetodielectric plates. Physical Review B, 2010, 81, .	3.2	39
139	THERMAL CASIMIR FORCE BETWEEN MAGNETIC MATERIALS. International Journal of Modern Physics A, 2010, 25, 2293-2301.	1.5	12
140	On the definition of dielectric permittivity for media with temporal dispersion in the presence of free charge carriers. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 015402.	2.1	0
141	Strengthening constraints on Yukawa-type corrections to Newtonian gravity from measuring the Casimir force between a cylinder and a plate. Physical Review D, 2010, 82, .	4.7	11
142	THE CASIMIR EFFECT AND THE FOUNDATIONS OF STATISTICAL PHYSICS. International Journal of Modern Physics A, 2010, 25, 2302-2312.	1.5	25
143	Advance and prospects in constraining the Yukawa-type corrections to Newtonian gravity from the Casimir effect. Physical Review D, 2010, 81, .	4.7	64
144	Lateral Casimir force between sinusoidally corrugated surfaces: Asymmetric profiles, deviations from the proximity force approximation, and comparison with exact theory. Physical Review B, 2010, 81, .	3.2	122

#	Article	IF	CITATIONS
145	Comparison of hydrodynamic and Dirac models of dispersion interaction between graphene and H, <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mrow><mml:mtext>He</mml:mtext></mml:mrow><mml:mrow><mml:mrow><a 102,="" 189301;="" 189302.<="" 2009,="" a="" an="" and="" atom="" author="" between="" carriers―="" conductor="" density="" force="" href="ma</td><td>3;2/mml:m</td><td>າວີ></mml:r</td></tr><tr><td>146</td><td>THERMAL CASIMIR FORCE BETWEEN MAGNETIC MATERIALS. , 2010, , .</td><td></td><td>O</td></tr><tr><td>147</td><td>THE CASIMIR EFFECT AND THE FOUNDATIONS OF STATISTICAL PHYSICS., 2010, , .</td><td></td><td>O</td></tr><tr><td>148</td><td>Demonstration of the asymmetric lateral Casimir force between corrugated surfaces in the nonadditive regime. Physical Review B, 2009, 80, .</td><td>3.2</td><td>90</td></tr><tr><td>149</td><td>Impact of magnetic properties on atom-wall interactions. Physical Review A, 2009, 79, .</td><td>2.5</td><td>27</td></tr><tr><td>150</td><td>Comment on " letters,="" lifshitz="" of="" physical="" reply="" review="" small="" td="" thermal="" with=""><td>7.8</td><td>13</td></mml:mrow></mml:mrow></mml:msup></mml:mrow></mml:math>	7.8	13
151	Comment on "Anomalies in electrostatic calibrations for the measurement of the Casimir force in a sphere-plane geometry― Physical Review A, 2009, 79, .	2.5	76
152	Comment on "Contribution of Drifting Carriers to the Casimir-Lifshitz and Casimir-Polder Interactions with Semiconductor Materials― Physical Review Letters, 2009, 102, 189303; author reply 189304.	7.8	11
153	WHY SCREENING EFFECTS DO NOT INFLUENCE THE CASIMIR FORCE. International Journal of Modern Physics A, 2009, 24, 1721-1742.	1.5	42
154	PROBLEMS IN THE LIFSHITZ THEORY OF ATOM-WALL INTERACTION. International Journal of Modern Physics A, 2009, 24, 1777-1788.	1.5	35
155	Application of the proximity force approximation to gravitational and Yukawa-type forces. Physical Review D, 2009, 79, .	4.7	44
156	The Casimir force between real materials: Experiment and theory. Reviews of Modern Physics, 2009, 81, 1827-1885.	45.6	638
157	Problems and paradoxes of the Lifshitz theory. Journal of Physics: Conference Series, 2009, 161, 012002.	0.4	37
158	Analytic approach to the thermal Casimir force between metal and dielectric. Annals of Physics, 2008, 323, 291-316.	2.8	61
159	Thermal Casimir effect in ideal metal rectangular boxes. European Physical Journal C, 2008, 57, 823-834.	3.9	68
160	Problems in the theory of the thermal Casimir force between dielectrics and semiconductors. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 164032.	2.1	24
161	Stronger constraints on non-Newtonian gravity from the Casimir effect. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 164054.	2.1	46
162	van der Waals and Casimir interactions between atoms and carbon nanotubes. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 164012.	2.1	38

#	Article	IF	Citations
163	Comment on "Precision measurement of the Casimir-Lifshitz force in a fluid― Physical Review A, 2008, 77, .	2.5	36
164	Lifshitz theory of atom-wall interaction with applications to quantum reflection. Physical Review A, 2008, 78, .	2.5	67
165	Comment on "Analytical and numerical verification of the Nernst theorem for metals― Physical Review E, 2008, 77, 023101; discussion 023102.	2.1	38
166	Thermal Casimir–Polder force between an atom and a dielectric plate: thermodynamics and experiment. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 432001.	2.1	62
167	Conductivity of dielectric and thermal atom–wall interaction. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 312002.	2.1	94
168	THEORY OF THE CASIMIR EFFECT BETWEEN DIELECTRIC AND SEMICONDUCTOR PLATES. , 2008, , .		0
169	Generalized plasma-like permittivity and thermal Casimir force between real metals. Journal of Physics A: Mathematical and Theoretical, 2007, 40, 13485-13499.	2.1	47
170	Control of the Casimir force by the modification of dielectric properties with light. Physical Review B, 2007, 76, .	3.2	161
171	van der Waals interaction between a microparticle and a single-walled carbon nanotube. Physical Review B, 2007, 75, .	3.2	86
172	Experimental approaches to the difference in the Casimir force due to modifications in the optical properties of the boundary surface. Physical Review A, 2007, 75, .	2.5	61
173	Comment on "Lateral Casimir Force beyond the Proximity-Force Approximation― Physical Review Letters, 2007, 98, 068901; author reply 068902.	7.8	36
174	Kramers–Kronig relations for plasma-like permittivities and the Casimir force. Journal of Physics A: Mathematical and Theoretical, 2007, 40, F339-F346.	2.1	73
175	Demonstration of optically modulated dispersion forces. Optics Express, 2007, 15, 4823.	3.4	149
176	Tests of new physics from precise measurements of the Casimir pressure between two gold-coated plates. Physical Review D, 2007, 75, .	4.7	367
177	Comment on "Effects of spatial dispersion on electromagnetic surface modes and on modes associated with a gap between two half spaces― Physical Review B, 2007, 75, .	3.2	44
178	Pulsating Casimir force. Journal of Physics A: Mathematical and Theoretical, 2007, 40, F841-F847.	2.1	48
179	Novel constraints on light elementary particles and extra-dimensional physics from the Casimir effect. European Physical Journal C, 2007, 51, 963-975.	3.9	245
180	Thermal correction to the Casimir force, radiative heat transfer, and an experiment. European Physical Journal C, 2007, 52, 701-720.	3.9	59

#	Article	IF	Citations
181	Lifshitz-type formulas for graphene and single-wall carbon nanotubes: van der Waals and Casimir interactions. Physical Review B, 2006, 74, .	3.2	121
182	Experiment and theory in the Casimir effect. Contemporary Physics, 2006, 47, 131-144.	1.8	85
183	RECENT RESULTS ON THERMAL CASIMIR FORCE BETWEEN DIELECTRICS AND RELATED PROBLEMS. International Journal of Modern Physics A, 2006, 21, 5007-5042.	1.5	52
184	Rigorous approach to the comparison between experiment and theory in Casimir force measurements. Journal of Physics A, 2006, 39, 6485-6493.	1.6	39
185	Dependence of the Casimir–Polder interaction between an atom and a cavity wall on atomic and material properties. Journal of Physics A, 2006, 39, 6583-6587.	1.6	34
186	Casimir–Polder interaction between an atom and a cylinder with application to nanosystems. Journal of Physics A, 2006, 39, 6481-6484.	1.6	45
187	Universal behaviour of dispersion forces between two dielectric plates in the low-temperature limit. Journal of Physics A, 2006, 39, 6495-6499.	1.6	55
188	Present status of controversies regarding the thermal Casimir force. Journal of Physics A, 2006, 39, 6589-6600.	1.6	75
189	Demonstration of the Difference in the Casimir Force for Samples with Different Charge-Carrier Densities. Physical Review Letters, 2006, 97, 170402.	7.8	125
190	Experimental test for the conductivity properties from the Casimir force between metal and semiconductor. Physical Review A, 2006, 74, .	2.5	112
191	Comment on "Temperature dependence of the Casimir effect― Physical Review E, 2006, 73, 028101.	2.1	85
192	CONSTRAINTS ON CORRECTIONS TO NEWTONIAN LAW OF GRAVITATION FROM THE MEASUREMENTS OF THE LATERAL CASIMIR FORCE. , 2006, , .		0
193	Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions. Annals of Physics, 2005, 318, 37-80.	2.8	358
194	Investigation of the Casimir force between metal and semiconductor test bodies. Physical Review A, 2005, 72, .	2.5	115
195	Thermal corrections in the Casimir interaction between a metal and dielectric. Physical Review A, 2005, 72, .	2.5	47
196	CASIMIR EFFECT AS A TEST FOR THERMAL CORRECTIONS AND HYPOTHETICAL LONG-RANGE INTERACTIONS. International Journal of Modern Physics A, 2005, 20, 2205-2221.	1.5	59
197	Dependences of the van der Waals atom-wall interaction on atomic and material properties. Physical Review A, 2005, 71, .	2.5	97
198	Van der Waals interaction between microparticle and uniaxial crystal with application to hydrogen atoms and multiwall carbon nanotubes. Physical Review B, 2005, 71, .	3.2	104

#	Article	IF	CITATIONS
199	Thermal quantum field theory and the Casimir interaction between dielectrics. Physical Review D, 2005, 72, .	4.7	122
200	Reply to "Comment on â€~Surface-impedance approach solves problems with the thermal Casimir force between real metals' ― Physical Review A, 2004, 70, .	2.5	41
201	Casimir-Polder interaction between an atom and a cavity wall under the influence of real conditions. Physical Review A, 2004, 70, .	2.5	108
202	Theory confronts experiment in the Casimir force measurements: Quantification of errors and precision. Physical Review A, 2004, 69, .	2.5	126
203	Control of the lateral Casimir force between corrugated surfaces. Physical Review A, 2004, 69, .	2.5	37
204	Precise Determination of the Casimir Force and First Realization of a "Casimir Less―Experiment. Journal of Low Temperature Physics, 2004, 135, 63-74.	1.4	41
205	Violation of the Nernst heat theorem in the theory of the thermal Casimir force between Drude metals. Physical Review A, 2004, 69, .	2.5	172
206	Improved tests of extra-dimensional physics and thermal quantum field theory from new Casimir force measurements. Physical Review D, 2003, 68, .	4.7	242
207	New Features of the Thermal Casimir Force at Small Separations. Physical Review Letters, 2003, 90, 160404.	7.8	70
208	Surface-impedance approach solves problems with the thermal Casimir force between real metals. Physical Review A, 2003, 67, .	2.5	111
209	Demonstration of the Lateral Casimir Force. Physical Review Letters, 2002, 88, 101801.	7.8	254
210	Experimental and theoretical investigation of the lateral Casimir force between corrugated surfaces. Physical Review A, 2002, 66, .	2.5	149
211	Thermodynamical aspects of the Casimir force between real metals at nonzero temperature. Physical Review A, 2002, 65, .	2.5	103
212	Perturbation approach to the Casimir force between two bodies made of different real metals. Physical Review A, 2002, 65, .	2.5	52
213	Correlation of energy and free energy for the thermal Casimir force between real metals. Physical Review A, 2002, 66, .	2.5	112
214	CONSTRAINTS ON YUKAWA-TYPE HYPOTHETICAL INTERACTIONS FROM RECENT CASIMIR FORCE MEASUREMENTS. International Journal of Modern Physics A, 2002, 17, 4143-4152.	1.5	38
215	WHAT IS THE TEMPERATURE DEPENDENCE OF THE CASIMIR FORCE BETWEEN REAL METALS?. International Journal of Modern Physics A, 2002, 17, 751-760.	1.5	9
216	PERTURBATION EXPANSION OF THE CONDUCTIVITY CORRECTION TO THE CASIMIR FORCE. International Journal of Modern Physics A, 2001, 16, 3103-3115.	1.5	34

#	Article	IF	CITATIONS
217	CASIMIR FORCE UNDER THE INFLUENCE OF REAL CONDITIONS. International Journal of Modern Physics A, 2001, 16, 3291-3308.	1.5	49
218	Bordag, Geyer, Klimchitskaya, and Mostepanenko Reply:. Physical Review Letters, 2001, 87, .	7.8	20
219	Surface impedance and the Casimir force. Physical Review A, 2001, 65, .	2.5	29
220	Investigation of the temperature dependence of the Casimir force between real metals. Physical Review A, 2001, 63, .	2.5	89
221	Higher-order conductivity corrections to the Casimir force. Physical Review A, 2000, 62, .	2.5	69
222	Casimir and van der Waals forces between two plates or a sphere (lens) above a plate made of real metals. Physical Review A, 2000, 61, .	2.5	201
223	Casimir Force at Both Nonzero Temperature and Finite Conductivity. Physical Review Letters, 2000, 85, 503-506.	7.8	164
224	New constraints for non-Newtonian gravity in the nanometer range from the improved precision measurement of the Casimir force. Physical Review D, 2000, 62, .	4.7	74
225	Surface roughness contribution to the Casimir interaction between an isolated atom and a cavity wall. Physical Review A, 2000, 61, .	2.5	60
226	Lateral projection as a possible explanation of the nontrivial boundary dependence of the Casimir force. Physical Review A, 2000, 63, .	2.5	14
227	Theoretical and experimental investigation of the force–distance relation for an atomic force microscope with a pyramidal tip. Surface Science, 2000, 453, 75-82.	1.9	25
228	INVESTIGATION OF SURFACE MAGNETIC STRUCTURE IN STEELS OF A SYSTEM Fe–Mn–Al–C BY ATOMIC FORCE MICROSCOPY. Surface Review and Letters, 1999, 06, 115-125.	1,1	5
229	Complete roughness and conductivity corrections for Casimir force measurement. Physical Review A, 1999, 60, 3487-3495.	2.5	156
230	Stronger constraints for nanometer scale Yukawa-type hypothetical interactions from the new measurement of the Casimir force. Physical Review D, 1999, 60, .	4.7	89
231	SOME ESTIMATIONS OF THE ATOMIC FRICTION COEFFICIENT BY SCANNING OF THE AFM TIP ALONG A CONSTANT FORCE SURFACE. Surface Review and Letters, 1999, 06, 341-345.	1.1	0
232	Using an atomic force microscope in the surface modification regime to determine the migration energy of surface defects. Technical Physics, 1999, 44, 964-969.	0.7	0
233	Description of force surfaces in atomic force microscopy with allowance for the mobility of the lattice atoms. Technical Physics, 1999, 44, 970-976.	0.7	9
234	Application of atomic force microscopy for investigation of magnetic structure of steels., 1999,,.		1

#	Article	IF	Citations
235	Constraints for hypothetical interactions from a recent demonstration of the Casimir force and some possible improvements. Physical Review D, 1998, 58, .	4.7	108
236	The Feasibility of Determining Vacancy Migration Energy by Atomic Force Microscopy Data. Surface Review and Letters, 1998, 05, 559-567.	1.1	1
237	Atomic Paths in Scanning of the AFM Tip above the Close-Packed Surface in Repulsive Mode. Surface Review and Letters, 1998, 05, 989-996.	1.1	1
238	CALCULATION OF LATERAL FORCE COMPONENTS IN AFM CONTACT MODE IN APPLICATION TO THE DIAGNOSTIC OF POINT DEFECTS. Surface Review and Letters, 1997, 04, 271-278.	1.1	6
239	AFM OPERATING MODE WITH A CONSTANT FORCE PROJECTION ONTO THE ARBITRARY AXIS. Surface Review and Letters, 1997, 04, 613-620.	1.1	2
240	A Proposed Experiment Using a Sphere with an Eccentric Cavity for Hypothetical Long-Range Interactions. International Journal of Modern Physics A, 1997, 12, 1465-1482.	1.5	3
241	Casimir Force Between a Flat Plate and a Spherical Lens: Application to the Results of a New Experiment. Modern Physics Letters A, 1997, 12, 2613-2622.	1.2	63
242	Modeling of surfaces of constant force above a lattice of close-packed atoms in the repulsive mode. Technical Physics, 1997, 42, 655-662.	0.7	1
243	THE CORRECTIONS TO THE CASIMIR FORCES FOR CONFIGURATIONS USED IN EXPERIMENTS: THE SPHERICAL LENS ABOVE THE PLANE AND TWO CROSSED CYLINDERS. International Journal of Modern Physics A, 1996, 11, 3723-3742.	1.5	55
244	Corrections to the Casimir force between plates with stochastic surfaces. Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 200, 95-102.	2.1	62
245	Corrections to the van der Waals forces in application to atomic force microscopy. Surface Science, 1995, 328, 129-134.	1.9	51
246	THE CASIMIR FORCE BETWEEN PLATES WITH SMALL DEVIATIONS FROM PLANE PARALLEL GEOMETRY. International Journal of Modern Physics A, 1995, 10, 2661-2681.	1.5	83
247	Stark broadening and satellite structure of hydrogen spectral lines in the presence of constant and microwave electric fields. Journal of Physics B: Atomic, Molecular and Optical Physics, 1991, 24, 1899-1907.	1.5	0
248	Measuring electric fields in a plasma from satellite structures in atomic spectra. Measurement Techniques, 1990, 33, 104-107.	0.6	0
249	A new method of calculation of the quasi-energy level widths for one-electron atoms. Journal of Physics B: Atomic and Molecular Physics, 1984, 17, 3449-3453.	1.6	2
250	Width of quasi-energy levels of a one-electron ion with arbitrary nuclear charge. Soviet Physics Journal (English Translation of Izvestiia Vysshykh Uchebnykh Zavedenii, Fizika), 1983, 26, 859-863.	0.0	0
251	On the problem of the formation energy of charged dangling bonds in vitreous silica. Journal of Physics C: Solid State Physics, 1983, 16, 6561-6564.	1.5	7

Application of relativistic Coulomb Green's function to the calculation of transition probabilities in an electric field. Soviet Physics Journal (English Translation of Izvestiia Vysshykh Uchebnykh) Tj ETQq0 0 0 rgBT /Overlock 10 of 50 57 Tc

#	Article	IF	CITATIONS
253	Relativistic calculations of transition probabilities in two-electron multicharged ions. Journal of Physics B: Atomic and Molecular Physics, 1974, 7, 2471-2475.	1.6	10