List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7417856/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	High Frequency of Hypermutable <i>Pseudomonas aeruginosa</i> in Cystic Fibrosis Lung Infection. Science, 2000, 288, 1251-1253.	12.6	1,322
2	Î ² -lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity. Nature Communications, 2013, 4, 1610.	12.8	320
3	β-Lactam Resistance Response Triggered by Inactivation of a Nonessential Penicillin-Binding Protein. PLoS Pathogens, 2009, 5, e1000353.	4.7	258
4	The mismatch repair system (mutS, mutL and uvrD genes) in Pseudomonas aeruginosa: molecular characterization of naturally occurring mutants. Molecular Microbiology, 2002, 43, 1641-1650.	2.5	243
5	Mutations in Putative Mutator Genes of <i>Mycobacterium tuberculosis</i> Strains of the W-Beijing Family. Emerging Infectious Diseases, 2003, 9, 838-845.	4.3	240
6	Antibiotic elective Environments. Clinical Infectious Diseases, 1998, 27, S5-S11.	5.8	197
7	Hypermutation as a Factor Contributing to the Acquisition of Antimicrobial Resistance. Clinical Infectious Diseases, 2003, 37, 1201-1209.	5.8	181
8	Antibiotics and antibiotic resistance: A bitter fight against evolution. International Journal of Medical Microbiology, 2013, 303, 293-297.	3.6	171
9	Evolution of Pseudomonas aeruginosa Antimicrobial Resistance and Fitness under Low and High Mutation Rates. Antimicrobial Agents and Chemotherapy, 2016, 60, 1767-1778.	3.2	170
10	Characterization of a new TEM-type beta-lactamase resistant to clavulanate, sulbactam, and tazobactam in a clinical isolate of Escherichia coli. Antimicrobial Agents and Chemotherapy, 1993, 37, 2059-2063.	3.2	168
11	Antimicrobials as promoters of genetic variation. Current Opinion in Microbiology, 2012, 15, 561-569.	5.1	161
12	Mycobacterium tuberculosis subsp. caprae subsp. nov.: A taxonomic study of a new member of the Mycobacterium tuberculosis complex isolated from goats in Spain. International Journal of Systematic and Evolutionary Microbiology, 1999, 49, 1263-1273.	1.7	152
13	Molecular Mechanisms and Clinical Impact of Acquired and Intrinsic Fosfomycin Resistance. Antibiotics, 2013, 2, 217-236.	3.7	151
14	Structure-Based Enhancement of Boronic Acid-Based Inhibitors of AmpC β-Lactamase. Journal of Medicinal Chemistry, 1998, 41, 4577-4586.	6.4	139
15	Effect of recA inactivation on mutagenesis of Escherichia coli exposed to sublethal concentrations of antimicrobials. Journal of Antimicrobial Chemotherapy, 2011, 66, 531-538.	3.0	139
16	Hypermutation and the Preexistence of Antibiotic-Resistant Pseudomonas aeruginosa Mutants: Implications for Susceptibility Testing and Treatment of Chronic Infections. Antimicrobial Agents and Chemotherapy, 2004, 48, 4226-4233.	3.2	138
17	Evolution of antibiotic resistance. Trends in Ecology and Evolution, 1997, 12, 482-487.	8.7	126
18	Inactivation of the hmgA gene of Pseudomonas aeruginosa leads to pyomelanin hyperproduction, stress resistance and increased persistence in chronic lung infection. Microbiology (United Kingdom), 2009, 155, 1050-1057.	1.8	124

#	Article	IF	CITATIONS
19	Nanomolar Inhibitors of AmpC β-Lactamase. Journal of the American Chemical Society, 2003, 125, 685-695.	13.7	123
20	Predictors of long-term response to protease inhibitor therapy in a cohort of HIV-infected patients. Aids, 1998, 12, F131-F135.	2.2	117
21	Antibiotic-mediated recombination: ciprofloxacin stimulates SOS-independent recombination of divergent sequences in Escherichia coli. Molecular Microbiology, 2007, 64, 83-93.	2.5	115
22	Concentration-Dependent Selection of Small Phenotypic Differences in TEM β-Lactamase-Mediated Antibiotic Resistance. Antimicrobial Agents and Chemotherapy, 2000, 44, 2485-2491.	3.2	114
23	Nosocomial transmission of Mycobacterium bovis resistant to 11 drugs in people with advanced HIV-1 infection. Lancet, The, 1997, 350, 1738-1742.	13.7	108
24	SOS-Independent Induction of dinB Transcription by β-Lactam-Mediated Inhibition of Cell Wall Synthesis in Escherichia coli. Journal of Bacteriology, 2005, 187, 1515-1518.	2.2	105
25	The Glycerol-3-Phosphate Permease GlpT Is the Only Fosfomycin Transporter in <i>Pseudomonas aeruginosa</i> . Journal of Bacteriology, 2009, 191, 6968-6974.	2.2	102
26	A non-canonical mismatch repair pathway in prokaryotes. Nature Communications, 2017, 8, 14246.	12.8	100
27	PBP3 inhibition elicits adaptive responses in Pseudomonas aeruginosa. Molecular Microbiology, 2006, 62, 84-99.	2.5	97
28	Biological Cost of AmpC Production for Salmonella enterica Serotype Typhimurium. Antimicrobial Agents and Chemotherapy, 2000, 44, 3137-3143.	3.2	90
29	Side effects of antibiotics on genetic variability. FEMS Microbiology Reviews, 2009, 33, 531-538.	8.6	89
30	Genetic characterization of multidrug-resistant Mycobacterium bovis strains from a hospital outbreak involving human immunodeficiency virus-positive patients. Journal of Clinical Microbiology, 1997, 35, 1390-1393.	3.9	85
31	Antibiotic-Induced Genetic Variation: How It Arises and How It Can Be Prevented. Annual Review of Microbiology, 2018, 72, 209-230.	7.3	81
32	Non-nucleoside reverse transcriptase inhibitor resistance among patients failing a nevirapine plus protease inhibitor-containing regimen. Aids, 2000, 14, F1-F7.	2.2	80
33	Transmission between HIV-infected patients of multidrug-resistant tuberculosis caused by Mycobacterium bovis. Aids, 1997, 11, 1237-1242.	2.2	76
34	Effect of Subinhibitory Concentrations of Antibiotics on Intrachromosomal Homologous Recombination in <i>Escherichia coli</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 3411-3415.	3.2	74
35	New extended-spectrum TEM-type beta-lactamase from Salmonella enterica subsp. enterica isolated in a nosocomial outbreak. Antimicrobial Agents and Chemotherapy, 1995, 39, 458-461.	3.2	72
36	Allele-Specific PCR Method Based on <i>pncA</i> and <i>oxyR</i> Sequences for Distinguishing <i>Mycobacterium bovis</i> from <i>Mycobacterium tuberculosis</i> : Intraspecific <i>M. bovis pncA</i> Sequence Polymorphism. Journal of Clinical Microbiology, 1998, 36, 239-242.	3.9	71

#	Article	IF	CITATIONS
37	A novel role for RecA under non-stress: promotion of swarming motility in Escherichia coli K-12. BMC Biology, 2007, 5, 14.	3.8	69
38	The complexed structure and antimicrobial activity of a nonâ€Î²â€lactam inhibitor of AmpC βâ€lactamase. Protein Science, 1999, 8, 2330-2337.	7.6	66
39	Single amino acid replacements at positions altered in naturally occurring extended-spectrum TEM beta-lactamases. Antimicrobial Agents and Chemotherapy, 1995, 39, 145-149.	3.2	63
40	Intrinsic and Environmental Mutagenesis Drive Diversification and Persistence of Pseudomonas aeruginosa in Chronic Lung Infections. Journal of Infectious Diseases, 2012, 205, 121-127.	4.0	61
41	Antagonistic Interactions of Pseudomonas aeruginosa Antibiotic Resistance Mechanisms in Planktonic but Not Biofilm Growth. Antimicrobial Agents and Chemotherapy, 2011, 55, 4560-4568.	3.2	58
42	Selection of Naturally Occurring Extended-Spectrum TEM Î ² -Lactamase Variants by Fluctuating Î ² -Lactam Pressure. Antimicrobial Agents and Chemotherapy, 2000, 44, 2182-2184.	3.2	57
43	Mutation and Evolution of Antibiotic Resistance: Antibiotics as Promoters of Antibiotic Resistance?. Current Drug Targets, 2002, 3, 345-349.	2.1	57
44	Autogenous and nonautogenous control of response in a genetic network. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12718-12723.	7.1	57
45	The Pseudomonas aeruginosa CreBC Two-Component System Plays a Major Role in the Response to β-Lactams, Fitness, Biofilm Growth, and Global Regulation. Antimicrobial Agents and Chemotherapy, 2014, 58, 5084-5095.	3.2	56
46	Quinolone Resistance Reversion by Targeting the SOS Response. MBio, 2017, 8, .	4.1	54
47	Implication of Ile-69 and Thr-182 residues in kinetic characteristics of IRT-3 (TEM-32) beta-lactamase. Antimicrobial Agents and Chemotherapy, 1996, 40, 2434-2436.	3.2	53
48	Characterization of a Nosocomial Outbreak Involving an Epidemic Plasmid Encoding for TEM-27 in Salmonella enterica Subspecies enterica Serotype Othmarschen. Journal of Infectious Diseases, 1996, 174, 1015-1020.	4.0	52
49	The <i>Pseudomonas aeruginosa pfpl</i> Gene Plays an Antimutator Role and Provides General Stress Protection. Journal of Bacteriology, 2009, 191, 844-850.	2.2	48
50	Genomewide Overexpression Screen for Fosfomycin Resistance in Escherichia coli: MurA Confers Clinical Resistance at Low Fitness Cost. Antimicrobial Agents and Chemotherapy, 2012, 56, 2767-2769.	3.2	48
51	Cyclic AMP receptor protein positively controls gyrA transcription and alters DNA topology after nutritional upshift in Escherichia coli. Journal of Bacteriology, 1996, 178, 3331-3334.	2.2	47
52	Characterization of the GO system ofPseudomonas aeruginosa. FEMS Microbiology Letters, 2002, 217, 31-35.	1.8	47
53	Recognition and Resistance in TEM β-Lactamaseâ€. Biochemistry, 2003, 42, 8434-8444.	2.5	47
54	Mutational Spectrum Drives the Rise of Mutator Bacteria. PLoS Genetics, 2013, 9, e1003167.	3.5	46

#	Article	IF	CITATIONS
55	Structure-based design and in-parallel synthesis of inhibitors of AmpC β-lactamase. Chemistry and Biology, 2001, 8, 593-610.	6.0	45
56	Bypass of genetic constraints during mutator evolution to antibiotic resistance. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142698.	2.6	45
57	H-NS and RpoS regulate emergence of Lac Ara+ mutants of Escherichia coli MCS2. Journal of Bacteriology, 1997, 179, 4620-4622.	2.2	44
58	Lysine Trimethylation of EF-Tu Mimics Platelet-Activating Factor To Initiate Pseudomonas aeruginosa Pneumonia. MBio, 2013, 4, e00207-13.	4.1	42
59	Very Low Cefotaxime Concentrations Select for Hypermutable Streptococcus pneumoniae Populations. Antimicrobial Agents and Chemotherapy, 2002, 46, 528-530.	3.2	41
60	Identification of Nudix Hydrolase Family Members with an Antimutator Role in Mycobacterium tuberculosis and Mycobacterium smegmatis. Journal of Bacteriology, 2006, 188, 3159-3161.	2.2	38
61	Role of inoculum and mutant frequency on fosfomycin MIC discrepancies by agar dilution and broth microdilution methods in Enterobacteriaceae. Clinical Microbiology and Infection, 2017, 23, 325-331.	6.0	38
62	Assessing the Emergence of Resistance: The Absence of Biological Cost In Vivo May Compromise Fosfomycin Treatments for P. aeruginosa Infections. PLoS ONE, 2010, 5, e10193.	2.5	37
63	The Escherichia coli SOS Gene dinF Protects against Oxidative Stress and Bile Salts. PLoS ONE, 2012, 7, e34791.	2.5	36
64	Computational and biological profile of boronic acids for the detection of bacterial serine- and metallo-β-lactamases. Scientific Reports, 2017, 7, 17716.	3.3	35
65	The K+ uptake regulator TrkA controls membrane potential, pH homeostasis and multidrug susceptibility in Mycobacterium smegmatis. Journal of Antimicrobial Chemotherapy, 2011, 66, 1489-1498.	3.0	34
66	The Animal Food Supplement Sepiolite Promotes a Direct Horizontal Transfer of Antibiotic Resistance Plasmids between Bacterial Species. Antimicrobial Agents and Chemotherapy, 2013, 57, 2651-2653.	3.2	34
67	An extended-spectrum AmpC-type β-lactamase obtained by in vitro antibiotic selection. FEMS Microbiology Letters, 1998, 165, 85-90.	1.8	33
68	A237T as a Modulating Mutation in Naturally Occurring Extended-Spectrum TEM-Type β-Lactamases. Antimicrobial Agents and Chemotherapy, 1998, 42, 1042-1044.	3.2	33
69	The evolution of contact-dependent inhibition in non-growing populations of <i>Escherichia coli</i> . Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 3-10.	2.6	33
70	A MATE-Family Efflux Pump Rescues the Escherichia coli 8-Oxoguanine-Repair-Deficient Mutator Phenotype and Protects Against H2O2 Killing. PLoS Genetics, 2010, 6, e1000931.	3.5	33
71	N-acetylcysteine blocks SOS induction and mutagenesis produced by fluoroquinolones in Escherichia coli. Journal of Antimicrobial Chemotherapy, 2019, 74, 2188-2196.	3.0	33
72	Exposure to diverse antimicrobials induces the expression of qnrB1, qnrD and smaqnr genes by SOS-dependent regulation. Journal of Antimicrobial Chemotherapy, 2012, 67, 2854-2859.	3.0	32

#	Article	IF	CITATIONS
73	Targeting the permeability barrier and peptidoglycan recycling pathways to disarm Pseudomonas aeruginosa against the innate immune system. PLoS ONE, 2017, 12, e0181932.	2.5	32
74	Molecular Markers Demonstrate that the First Described Multidrug-Resistant <i>Mycobacterium bovis</i> Outbreak Was Due to <i>Mycobacterium tuberculosis</i> . Journal of Clinical Microbiology, 1999, 37, 971-975.	3.9	30
75	Specificity and mutagenesis bias of the mycobacterial alternative mismatch repair analyzed by mutation accumulation studies. Science Advances, 2020, 6, eaay4453.	10.3	30
76	Molecular insights into fosfomycin resistance in <i>Escherichia coli</i> . Journal of Antimicrobial Chemotherapy, 2017, 72, dkw573.	3.0	29
77	Parallel Evolution of High-Level Aminoglycoside Resistance in Escherichia coli Under Low and High Mutation Supply Rates. Frontiers in Microbiology, 2018, 9, 427.	3.5	28
78	Peptidoglycan recycling contributes to intrinsic resistance to fosfomycin in Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy, 2018, 73, 2960-2968.	3.0	28
79	The Antibiotic Selective Process: Concentrationâ€Specific Amplification of Lowâ€Level Resistant Populations. Novartis Foundation Symposium, 1997, 207, 93-111.	1.1	27
80	Mutations in the aphA-2 gene of transposon Tn5 mapping within the regions highly conserved in aminoglycoside-phosphotransferases strongly reduce aminoglycoside resistance. Molecular Microbiology, 1991, 5, 1511-1518.	2.5	26
81	Synergistic activity of fosfomycin, β-lactams and peptidoglycan recycling inhibition against <i>Pseudomonas aeruginosa</i> . Journal of Antimicrobial Chemotherapy, 2017, 72, 448-454.	3.0	25
82	ACI-1 from Acidaminococcus fermentans : Characterization of the First β-Lactamase in Anaerobic Cocci. Antimicrobial Agents and Chemotherapy, 2000, 44, 3144-3149.	3.2	24
83	Frequency of Spontaneous Resistance to Fosfomycin Combined with Different Antibiotics in <i>Pseudomonas aeruginosa</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 4948-4949.	3.2	24
84	Phenylboronic Acid Derivatives as Validated Leads Active in Clinical Strains Overexpressing KPCâ€2: A Step against Bacterial Resistance. ChemMedChem, 2018, 13, 713-724.	3.2	24
85	Urinary Tract Conditions Affect Fosfomycin Activity against Escherichia coli Strains Harboring Chromosomal Mutations Involved in Fosfomycin Uptake. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	22
86	High Recombinant Frequency in Extraintestinal PathogenicEscherichia coliStrains. Molecular Biology and Evolution, 2015, 32, 1708-1716.	8.9	21
87	Cellular Response to Ciprofloxacin in Low-Level Quinolone-Resistant Escherichia coli. Frontiers in Microbiology, 2017, 8, 1370.	3.5	21
88	Intrapopulation variability in mutator prevalence among urinary tract infection isolates of Escherichia coli. Clinical Microbiology and Infection, 2016, 22, 566.e1-566.e7.	6.0	20
89	Urinary Tract Physiological Conditions Promote Ciprofloxacin Resistance in Low-Level-Quinolone-Resistant Escherichia coli. Antimicrobial Agents and Chemotherapy, 2016, 60, 4252-4258.	3.2	20
90	Susceptibility to R-pyocins of Pseudomonas aeruginosa clinical isolates from cystic fibrosis patients. Journal of Antimicrobial Chemotherapy, 2018, 73, 2770-2776.	3.0	19

#	Article	IF	CITATIONS
91	hns mutant unveils the presence of a latent haemolytic activity in Escherichia coli K-12. Molecular Microbiology, 1996, 19, 909-910.	2.5	18
92	Non-canonical mechanisms of antibiotic resistance. European Journal of Clinical Microbiology and Infectious Diseases, 1994, 13, 1015-1022.	2.9	17
93	Suppression of the SOS response modifies spatiotemporal evolution, post-antibiotic effect, bacterial fitness and biofilm formation in quinolone-resistant Escherichia coli. Journal of Antimicrobial Chemotherapy, 2019, 74, 66-73.	3.0	17
94	Multidrug-resistant <i>Mycobacterium tuberculosis</i> , Bangui, Central African Republic. Emerging Infectious Diseases, 2006, 12, 1454-1456.	4.3	16
95	<i>N</i> -Acetylcysteine Selectively Antagonizes the Activity of Imipenem in Pseudomonas aeruginosa by an OprD-Mediated Mechanism. Antimicrobial Agents and Chemotherapy, 2015, 59, 3246-3251.	3.2	16
96	Ciprofloxacin-Mediated Mutagenesis Is Suppressed by Subinhibitory Concentrations of Amikacin in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	16
97	Selection of very small differences in bacterial evolution. International Microbiology, 1998, 1, 295-300.	2.4	16
98	Estimating mutation rates in low-replication experiments. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2011, 714, 26-32.	1.0	15
99	Aza-boronic acids as non-β-lactam inhibitors of AmpC-β-lactamase. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 3979-3983.	2.2	14
100	Nanostructured hybrid device mimicking bone extracellular matrix as local and sustained antibiotic delivery system. Microporous and Mesoporous Materials, 2018, 256, 165-176.	4.4	14
101	Simple DNA transformation in Pseudomonas based on the Yoshida effect. Journal of Microbiological Methods, 2012, 89, 95-98.	1.6	13
102	4-Amino-1,2,4-triazole-3-thione as a Promising Scaffold for the Inhibition of Serine and Metallo-Î ² -Lactamases. Pharmaceuticals, 2020, 13, 52.	3.8	13
103	Design, synthesis and biological evaluation of non-covalent AmpC β-lactamases inhibitors. Medicinal Chemistry Research, 2017, 26, 975-986.	2.4	11
104	Seawater salt-trapped Pseudomonas aeruginosa survives for years and gets primed for salinity tolerance. BMC Microbiology, 2019, 19, 142.	3.3	11
105	A clinical isolate of transposon Tn5 expressing streptomycin resistance in Escherichia coli. Journal of Bacteriology, 1988, 170, 1275-1278.	2.2	10
106	In vitro plasmid-encoded resistance to quinolones. FEMS Microbiology Letters, 2006, 154, 271-276.	1.8	10
107	Can Clays in Livestock Feed Promote Antibiotic Resistance and Virulence in Pathogenic Bacteria?. Antibiotics, 2015, 4, 299-308.	3.7	9
108	In silico identification and experimental validation of hits active against KPC-2 Î ² -lactamase. PLoS ONE, 2018, 13, e0203241.	2.5	9

#	Article	IF	CITATIONS
109	Phenylboronic Acids Probing Molecular Recognition against Class A and Class C β-lactamases. Antibiotics, 2019, 8, 171.	3.7	9
110	Plasmidic <i>qnr</i> Genes Confer Clinical Resistance to Ciprofloxacin under Urinary Tract Physiological Conditions. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	8
111	Clay-induced DNA breaks as a path for genetic diversity, antibiotic resistance, and asbestos carcinogenesis. Scientific Reports, 2018, 8, 8504.	3.3	8
112	Synergistic Quinolone Sensitization by Targeting the <i>recA</i> SOS Response Gene and Oxidative Stress. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	8
113	Bleomycin increases amikacin and streptomycin resistance in Escherichia coli harboring transposon Tn5. Antimicrobial Agents and Chemotherapy, 1993, 37, 1982-1985.	3.2	7
114	Determinants of Genetic Diversity of Spontaneous Drug Resistance in Bacteria. Genetics, 2016, 203, 1369-1380.	2.9	7
115	Detection of Low-Level Fosfomycin-Resistant Variants by Decreasing Glucose-6-Phosphate Concentration in Fosfomycin Susceptibility Determination. Antibiotics, 2020, 9, 802.	3.7	7
116	Effect of RecA inactivation on quinolone susceptibility and the evolution of resistance in clinical isolates of <i>Escherichia coli</i> . Journal of Antimicrobial Chemotherapy, 2021, 76, 338-344.	3.0	7
117	Interplay among Different Fosfomycin Resistance Mechanisms in Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	7
118	Bleomycin-kanamycin resistance as a marker of the presence of transposon Tn5 in clinical strains ofEscherichia coli. European Journal of Clinical Microbiology and Infectious Diseases, 1989, 8, 995-998.	2.9	6
119	Identification as Mycobacterium tuberculosis of previously described M bovis multidrug-resistant strains. Lancet, The, 1998, 351, 758.	13.7	6
120	Contribution of hypermutation to fosfomycin heteroresistance in Escherichia coli. Journal of Antimicrobial Chemotherapy, 2020, 75, 2066-2075.	3.0	6
121	Control of Genome Stability by EndoMS/NucS-Mediated Non-Canonical Mismatch Repair. Cells, 2021, 10, 1314.	4.1	6
122	Effect of RecA inactivation and detoxification systems on the evolution of ciprofloxacin resistance in <i>Escherichia coli</i> . Journal of Antimicrobial Chemotherapy, 2022, 77, 641-645.	3.0	5
123	In-vitro synergy between aminoglycosides deployed against Staphylococcus spp. harbouring a 6′-aminoglycoside acetyltransferase, 2″-aminoglycoside phosphotransferase enzyme. Journal of Antimicrobial Chemotherapy, 1994, 33, 747-755.	3.0	3
124	Determination of the structure of a hybrid between 2-(1,4-benzoquinone)acetic acid and a linear peptide by electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2006, 20, 512-516.	1.5	3
125	Activity of Fosfomycin and Amikacin against Fosfomycin-Heteroresistant Escherichia coli Strains in a Hollow-Fiber Infection Model. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	3
126	Antibiotic resistance in hospital infections: the role of newer cephalosporins. Clinical Microbiology and Infection, 2000, 6, 95-97.	6.0	1

#	Article	IF	CITATIONS
127	Effect of subinhibitory concentrations of ampicillin on Listeria monocytogenes. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2020, 38, 72-75.	0.5	1
128	PCR and hemodialysis patients. Clinical Nephrology, 1993, 40, 121-2.	0.7	1