
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7417022/publications.pdf Version: 2024-02-01

Ιυν Κοβλγλεμι

#	Article	IF	CITATIONS
1	Temperature-responsive cell culture surfaces for regenerative medicine with cell sheet engineering. Progress in Polymer Science, 2007, 32, 1123-1133.	24.7	243
2	Temperature-responsive intelligent interfaces for biomolecular separation and cell sheet engineering. Journal of the Royal Society Interface, 2009, 6, S293-309.	3.4	214
3	Cellular control of tissue architectures using a three-dimensional tissue fabrication technique. Biomaterials, 2007, 28, 4939-4946.	11.4	177
4	Effects of Graft Densities and Chain Lengths on Separation of Bioactive Compounds by Nanolayered Thermoresponsive Polymer Brush Surfaces. Langmuir, 2008, 24, 511-517.	3.5	160
5	Interfacial Property Modulation of Thermoresponsive Polymer Brush Surfaces and Their Interaction with Biomolecules. Langmuir, 2007, 23, 9409-9415.	3.5	143
6	Cell sheet tissue engineering: Cell sheet preparation, harvesting/manipulation, and transplantation. Journal of Biomedical Materials Research - Part A, 2019, 107, 955-967.	4.0	142
7	On-chip cell migration assay using microfluidic channels. Biomaterials, 2007, 28, 4017-4022.	11.4	132
8	Aqueous Chromatography Utilizing pH-/Temperature-Responsive Polymer Stationary Phases To Separate Ionic Bioactive Compounds. Analytical Chemistry, 2001, 73, 2027-2033.	6.5	126
9	Preparation of Thermoresponsive Cationic Copolymer Brush Surfaces and Application of the Surface to Separation of Biomolecules. Biomacromolecules, 2008, 9, 1340-1347.	5.4	119
10	Microfluidic devices for size-dependent separation of liver cells. Biomedical Microdevices, 2007, 9, 637-645.	2.8	110
11	Characterization of Ultra‶hin Temperatureâ€Responsive Polymer Layer and Its Polymer Thickness Dependency on Cell Attachment/Detachment Properties. Macromolecular Bioscience, 2010, 10, 1117-1129.	4.1	109
12	Fabrication of transferable micropatterned-co-cultured cell sheets with microcontact printing. Biomaterials, 2009, 30, 5427-5432.	11.4	101
13	Temperature-responsive glass coverslips with an ultrathin poly(N-isopropylacrylamide) layer. Acta Biomaterialia, 2009, 5, 470-476.	8.3	101
14	Cell micropatterning using photopolymerization with a liquid crystal device commercial projector. Biomaterials, 2004, 25, 2047-2053.	11.4	98
15	Aqueous chromatography utilizing hydrophobicity-modified anionic temperature-responsive hydrogel for stationary phases. Journal of Chromatography A, 2002, 958, 109-119.	3.7	95
16	Cross-Linked Thermoresponsive Anionic Polymer-Grafted Surfaces To Separate Bioactive Basic Peptides. Analytical Chemistry, 2003, 75, 3244-3249.	6.5	94
17	Thermal Modulated Interaction of Aqueous Steroids Using Polymer-Grafted Capillaries. Langmuir, 2006, 22, 425-430.	3.5	81
18	Thermo-responsive polymer brush-grafted porous polystyrene beads for all-aqueous chromatography. Journal of Chromatography A, 2010, 1217, 522-529.	3.7	79

#	Article	IF	CITATIONS
19	Thermally-modulated on/off-adsorption materials for pharmaceutical protein purification. Biomaterials, 2011, 32, 619-627.	11.4	78
20	Design of Temperature-Responsive Polymer-Grafted Surfaces for Cell Sheet Preparation and Manipulation. Bulletin of the Chemical Society of Japan, 2019, 92, 817-824.	3.2	72
21	Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns. Biomaterials, 2006, 27, 3005-3009.	11.4	69
22	Temperature-responsive poly(N-isopropylacrylamide)-grafted microcarriers for large-scale non-invasive harvest of anchorage-dependent cells. Biomaterials, 2012, 33, 3803-3812.	11.4	65
23	Switching of cell growth/detachment on heparin-functionalized thermoresponsive surface for rapid cell sheet fabrication and manipulation. Biomaterials, 2013, 34, 4214-4222.	11.4	64
24	Influence of Graft Interface Polarity on Hydration/Dehydration of Grafted Thermoresponsive Polymer Brushes and Steroid Separation Using All-Aqueous Chromatography. Langmuir, 2008, 24, 10981-10987.	3.5	62
25	Mass preparation of size-controlled mouse embryonic stem cell aggregates and induction of cardiac differentiation by cell patterning method. Biomaterials, 2009, 30, 4384-4389.	11.4	61
26	Thermoresponsive Polymer Brush Surfaces with Hydrophobic Groups for All-Aqueous Chromatography. ACS Applied Materials & Interfaces, 2010, 2, 1247-1253.	8.0	61
27	High Stability of Thermoresponsive Polymer-Brush-Grafted Silica Beads as Chromatography Matrices. ACS Applied Materials & Interfaces, 2012, 4, 1998-2008.	8.0	61
28	Shear stress-dependent cell detachment from temperature-responsive cell culture surfaces in a microfluidic device. Biomaterials, 2012, 33, 7405-7411.	11.4	59
29	Second-Generation Maskless Photolithography Device for Surface Micropatterning and Microfluidic Channel Fabrication. Analytical Chemistry, 2008, 80, 1323-1327.	6.5	56
30	Simultaneous Enhancement of Cell Proliferation and Thermally Induced Harvest Efficiency Based on Temperature-Responsive Cationic Copolymer-Grafted Microcarriers. Biomacromolecules, 2012, 13, 1765-1773.	5.4	56
31	Fabrication of a thermoresponsive cell culture dish: a key technology for cell sheet tissue engineering. Science and Technology of Advanced Materials, 2010, 11, 014111.	6.1	53
32	Thermoresponsive Polymer Brush on Monolithic-Silica-Rod for the High-Speed Separation of Bioactive Compounds. Langmuir, 2011, 27, 10830-10839.	3.5	51
33	Thermo-responsive protein adsorbing materials for purifying pharmaceuticalprotein on exposed charging surface. Journal of Materials Chemistry, 2011, 21, 2590-2593.	6.7	47
34	Monolithic Silica Rods Grafted with Thermoresponsive Anionic Polymer Brushes for High-Speed Separation of Basic Biomolecules and Peptides. Biomacromolecules, 2014, 15, 1204-1215.	5.4	46
35	Preparation of thermo-responsive polymer brushes on hydrophilic polymeric beads by surface-initiated atom transfer radical polymerization for a highly resolutive separation of peptides. Journal of Chromatography A, 2010, 1217, 5978-5985.	3.7	44
36	Millisecond treatment of cells using microfluidic devices via two-step carrier-medium exchange. Lab on A Chip, 2008, 8, 772.	6.0	43

#	Article	IF	CITATIONS
37	Effect of reaction solvent on the preparation of thermo-responsive stationary phase through a surface initiated atom transfer radical polymerization. Journal of Chromatography A, 2011, 1218, 8617-8628.	3.7	42
38	Thermally responsive microcarriers with optimal poly(N-isopropylacrylamide) grafted density for facilitating cell adhesion/detachment in suspension culture. Acta Biomaterialia, 2012, 8, 3904-3913.	8.3	42
39	Thermally Modulated Cationic Copolymer Brush on Monolithic Silica Rods for High-Speed Separation of Acidic Biomolecules. ACS Applied Materials & Interfaces, 2013, 5, 1442-1452.	8.0	42
40	Thermoresponsive Copolymer Brushes Possessing Quaternary Amine Groups for Strong Anion-Exchange Chromatographic Matrices. Biomacromolecules, 2014, 15, 1031-1043.	5.4	42
41	Thermoresponsive hydrophobic copolymer brushes modified porous monolithic silica for high-resolution bioseparation. RSC Advances, 2015, 5, 66155-66167.	3.6	42
42	The use of biotin–avidin binding to facilitate biomodification of thermoresponsive culture surfaces. Biomaterials, 2007, 28, 5471-5476.	11.4	41
43	Preparation of Thermoresponsive Anionic Copolymer Brush Surfaces for Separating Basic Biomolecules. Biomacromolecules, 2010, 11, 215-223.	5.4	41
44	Thermoresponsive Anionic Copolymer Brushes Containing Strong Acid Moieties for Effective Separation of Basic Biomolecules and Proteins. Biomacromolecules, 2014, 15, 3846-3858.	5.4	40
45	Effective separation of peptides using highly dense thermo-responsive polymer brush-grafted porous polystyrene beads. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 2191-2198.	2.3	39
46	Protein separations via thermally responsive ionic block copolymer brush layers. RSC Advances, 2016, 6, 26254-26263.	3.6	38
47	Live cellsâ€based cytotoxic sensorchip fabricated in a microfluidic system. Biotechnology and Bioengineering, 2008, 99, 1513-1517.	3.3	37
48	Preparation of Microfluidic Devices Using Micropatterning of a Photosensitive Material by a Maskless, Liquid-Crystal-Display Projection Method. Advanced Materials, 2004, 16, 1997-2001.	21.0	36
49	Temperature-Modulated Interaction Changes with Adenosine Nucleotides on Intelligent Cationic, Thermoresponsive Surfaces1. Journal of Bioactive and Compatible Polymers, 2007, 22, 575-588.	2.1	35
50	A heparin-modified thermoresponsive surface with heparin-binding epidermal growth factor-like growth factor for maintaining hepatic functions inÂvitro and harvesting hepatocyte sheets. Regenerative Therapy, 2016, 3, 97-106.	3.0	32
51	Micropatterned surfaces prepared using a liquid crystal projector-modified photopolymerization device and microfluidics. Journal of Biomedical Materials Research Part B, 2004, 69A, 391-397.	3.1	26
52	Modulation of graft architectures for enhancing hydrophobic interaction of biomolecules with thermoresponsive polymer-grafted surfaces. Colloids and Surfaces B: Biointerfaces, 2012, 99, 95-101.	5.0	20
53	Thermoresponsive anionic block copolymer brushes with a strongly anionic bottom segment for effective interactions with biomolecules. RSC Advances, 2016, 6, 93169-93179.	3.6	20
54	Effect of Temperature Changes on Serum Protein Adsorption on Thermoresponsive Cell-Culture Surfaces Monitored by A Quartz Crystal Microbalance with Dissipation. International Journal of Molecular Sciences, 2018, 19, 1516.	4.1	19

#	Article	IF	CITATIONS
55	Rate control of cell sheet recovery by incorporating hydrophilic pattern in thermoresponsive cell culture dish. Journal of Biomedical Materials Research - Part A, 2014, 102, 2849-2856.	4.0	16
56	On-off affinity binding modulation on thermoresponsive polymer-grafted surfaces for capture and release of proteins and cells. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 939-957.	3.5	15
57	An index formula for the degree of (S)+-mappings associated with one-dimensionalp-Laplacian. Abstract and Applied Analysis, 2004, 2004, 981-995.	0.7	14
58	Surface design of antibody-immobilized thermoresponsive cell culture dishes for recovering intact cells by low-temperature treatment. Journal of Biomedical Materials Research - Part A, 2014, 102, 3883-3893.	4.0	12
59	Thermoresponsive thin hydrogel-grafted surfaces for biomedical applications. Reactive and Functional Polymers, 2013, 73, 939-944.	4.1	11
60	A Molded Hyaluronic Acid Gel as a Micro-Template for Blood Capillaries. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 135-147.	3.5	10
61	Measurement of the dynamic behavior of thin poly(N-isopropylacrylamide) hydrogels and their phase transition temperatures measured using reflectometric interference spectroscopy. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	9
62	Hydration of poly(N-isopropylacrylamide) brushes on micro-silica beads measured by a fluorescent probe. Chemical Physics Letters, 2010, 491, 193-198.	2.6	8
63	Micropatterning with a Liquid Crystal Display (LCD) Projector. Methods in Cell Biology, 2014, 119, 141-158.	1.1	8
64	Stripe-Patterned Thermo-responsive Cell Culture Dish for Cell Separation without Cell Labeling. Small, 2015, 11, 681-687.	10.0	8
65	Design of Temperature-Responsive Cell Culture Surfaces for Cell Sheet-Based Regenerative Therapy and 3D Tissue Fabrication. Advances in Experimental Medicine and Biology, 2018, 1078, 371-393.	1.6	8
66	Heparin-functionalized thermoresponsive surface. Organogenesis, 2013, 9, 125-127.	1.2	7
67	Grand Espoir: Robotics in Regenerative Medicine. Journal of Robotics and Mechatronics, 2007, 19, 500-505.	1.0	6
68	Development of Microfabrication Technology with Maskless Photolithography Device Using LCD Projector. Journal of Robotics and Mechatronics, 2010, 22, 608-612.	1.0	5
69	Selective Cell Adhesion and Detachment on Antibody-Immobilized Thermoresponsive Surfaces by Temperature Changes. Journal of Robotics and Mechatronics, 2013, 25, 637-643.	1.0	2
70	Preservation of heparin-binding EGF-like growth factor activity on heparin-modified poly(<i>N</i> -isopropylacrylamide)-grafted surfaces. RSC Advances, 2021, 11, 37225-37232.	3.6	2
71	Development of the Maskless Exposure Device equipped with a LCD-Projector for Fabrication of Micropatterned Surfaces and Microfluidic Channels. , 2007, , .		1
72	ECM-mimicking thermoresponsive surface for manipulating hepatocyte sheets with maintenance of hepatic functions. , 2016, , .		1

#	Article	IF	CITATIONS
73	Immobilization of biomolecules onto thermoresponsive culture dishes by affinity binding. , 2006, , .		0
74	Cell migration assay using multiple laminar flows in PDMS microchannel. , 2007, , .		0
75	Development of the maskless photolithography device with an LCD-projector for fabrication of micropatterned surfaces. , 2009, , .		0
76	Fabrication of microfluidic device on temperature-responsive cell culture surface for studying the shear stress-dependent cell detachment. , 2011, , .		0
77	Fabrication of thermoresponsive surface for cell sheet harvest by photopolymerization. , 2011, , .		0
78	Thermoresponsive affinity interaction between cells and immobilized antibodies on poly(N-isopropylacrylamide)-grafted surfaces. , 2012, , .		0
79	Biofunctional Thermo-Responsive Polymeric Surface with Micropatterns for Label Free Cell Separation. Materials Research Society Symposia Proceedings, 2014, 1621, 107-112.	0.1	0
80	Fabrication of functional liver tissues by cell sheet-based bioassembler technologies. , 2015, , .		0
81	Cell Sheet Technologies. , 2016, , 97-113.		0
82	Sociocytology Illuminated by Reconstructing Functional Tissue with Cell Sheet Based Technology. , 2015, , 327-345.		0