Frank Ohme

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7416987/publications.pdf Version: 2024-02-01

FDANK OHME

#	Article	IF	CITATIONS
1	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
2	Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era. Physical Review D, 2016, 93, .	4.7	701
3	Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal. Physical Review D, 2016, 93, .	4.7	511
4	Simple Model of Complete Precessing Black-Hole-Binary Gravitational Waveforms. Physical Review Letters, 2014, 113, 151101.	7.8	498
5	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
6	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
7	Inspiral-Merger-Ringdown Waveforms for Black-Hole Binaries with Nonprecessing Spins. Physical Review Letters, 2011, 106, 241101.	7.8	420
8	Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries. Physical Review D, 2010, 82, .	4.7	352
9	Science with the space-based interferometer eLISA: Supermassive black hole binaries. Physical Review D, 2016, 93, .	4.7	321
10	Towards models of gravitational waveforms from generic binaries: II. Modelling precession effects with a single effective precession parameter. Physical Review D, 2015, 91, .	4.7	250
11	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
12	First Higher-Multipole Model of Gravitational Waves from Spinning and Coalescing Black-Hole Binaries. Physical Review Letters, 2018, 120, 161102.	7.8	161
13	Matter imprints in waveform models for neutron star binaries: Tidal and self-spin effects. Physical Review D, 2019, 99, .	4.7	144
14	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
15	Phenomenological model for the gravitational-wave signal from precessing binary black holes with two-spin effects. Physical Review D, 2019, 100, .	4.7	136
16	Including higher order multipoles in gravitational-wave models for precessing binary black holes. Physical Review D, 2020, 101, .	4.7	122
17	Will black hole-neutron star binary inspirals tell us about the neutron star equation of state?. Physical Review D, 2011, 84, .	4.7	112
18	The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity waveforms for non-precessing black-hole binaries. Classical and Quantum Gravity, 2012, 29, 124001.	4.0	106

FRANK OHME

#	Article	IF	CITATIONS
19	DISTINGUISHING COMPACT BINARY POPULATION SYNTHESIS MODELS USING GRAVITATIONAL WAVE OBSERVATIONS OF COALESCING BINARY BLACK HOLES. Astrophysical Journal, 2015, 810, 58.	4.5	90
20	Wormholes and trumpets: Schwarzschild spacetime for the moving-puncture generation. Physical Review D, 2008, 78, .	4.7	82
21	On the properties of the massive binary black hole merger GW170729. Physical Review D, 2019, 100, .	4.7	82
22	Can we measure individual black-hole spins from gravitational-wave observations?. Physical Review D, 2016, 93, .	4.7	71
23	Simulations of black-hole binaries with unequal masses or nonprecessing spins: Accuracy, physical properties, and comparison with post-Newtonian results. Physical Review D, 2010, 82, .	4.7	59
24	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
25	PROSPECTS FOR JOINT GRAVITATIONAL-WAVE AND ELECTROMAGNETIC OBSERVATIONS OF NEUTRON-STAR-BLACK-HOLE COALESCING BINARIES. Astrophysical Journal Letters, 2014, 791, L7.	8.3	50
26	Parameter estimation on compact binary coalescences with abruptly terminating gravitational waveforms. Classical and Quantum Gravity, 2014, 31, 155005.	4.0	49
27	Relevance of tidal effects and post-merger dynamics for binary neutron star parameter estimation. Physical Review D, 2018, 98, .	4.7	46
28	Reliability of complete gravitational waveform models for compact binary coalescences. Physical Review D, 2011, 84, .	4.7	43
29	Statistical and systematic errors for gravitational-wave inspiral signals: A principal component analysis. Physical Review D, 2013, 88, .	4.7	40
30	Length requirements for numerical-relativity waveforms. Physical Review D, 2010, 82, .	4.7	36
31	Analytical meets numerical relativity: status of complete gravitational waveform models for binary black holes. Classical and Quantum Gravity, 2012, 29, 124002.	4.0	34
32	Detection of gravitational-wave signals from binary neutron star mergers using machine learning. Physical Review D, 2020, 102, .	4.7	34
33	Addendum to †The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity waveforms for non-precessing black-hole binaries'. Classical and Quantum Gravity, 2013, 30, 199401.	4.0	28
34	Finite tidal effects in GW170817: Observational evidence or model assumptions?. Physical Review D, 2019, 100, .	4.7	27
35	Regression methods in waveform modeling: a comparative study. Classical and Quantum Gravity, 2020, 37, 075012.	4.0	26
36	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20

FRANK OHME

#	Article	IF	CITATIONS
37	Adding eccentricity to quasicircular binary-black-hole waveform models. Physical Review D, 2021, 103, .	4.7	18
38	Constraining the Neutron Star Radius with Joint Gravitational-wave and Short Gamma-Ray Burst Observations of Neutron Star–Black Hole Coalescing Binaries. Astrophysical Journal, 2019, 877, 94.	4.5	17
39	Interplay of spin-precession and higher harmonics in the parameter estimation of binary black holes. Physical Review D, 2022, 105, .	4.7	15
40	Training strategies for deep learning gravitational-wave searches. Physical Review D, 2022, 105, .	4.7	14
41	Testing General Relativity with Gravitational Waves: An Overview. Universe, 2021, 7, 497.	2.5	14
42	Numerical inside view of hypermassive remnant models for GW170817. Physical Review D, 2021, 104, .	4.7	9
43	Enhancing gravitational waveform models through dynamic calibration. Physical Review D, 2019, 99, .	4.7	6
44	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
45	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. , 2016, 19, 1.		1
46	Can we measure individual black-hole spins from gravitational-wave observations?. , 2017, , .		0