Nicholas J Dickens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7416517/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Initial sequencing and comparative analysis of the mouse genome. Nature, 2002, 420, 520-562.	27.8	6,319
2	Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature, 2004, 432, 695-716.	27.8	2,421
3	Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Research, 2002, 30, 242-244.	14.5	613
4	The Tudor domain â€~Royal Family': Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends in Biochemical Sciences, 2003, 28, 69-74.	7.5	448
5	Chromosome and gene copy number variation allow major structural change between species and strains of <i>Leishmania</i> . Genome Research, 2011, 21, 2129-2142.	5.5	380
6	A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. Nature, 2014, 507, 253-257.	27.8	366
7	Positional cloning of a novel gene influencing asthma from Chromosome 2q14. Nature Genetics, 2003, 35, 258-263.	21.4	326
8	A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. Blood, 2010, 116, e56-e65.	1.4	315
9	Heritability and Tissue Specificity of Expression Quantitative Trait Loci. PLoS Genetics, 2006, 2, e172.	3.5	183
10	Regulators of Trypanosoma brucei Cell Cycle Progression and Differentiation Identified Using a Kinome-Wide RNAi Screen. PLoS Pathogens, 2014, 10, e1003886.	4.7	176
11	Gene mapping and expression analysis of 16q loss of heterozygosity identifies WWOX and CYLD as being important in determining clinical outcome in multiple myeloma. Blood, 2007, 110, 3291-3300.	1.4	133
12	Homozygous Deletion Mapping in Myeloma Samples Identifies Genes and an Expression Signature Relevant to Pathogenesis and Outcome. Clinical Cancer Research, 2010, 16, 1856-1864.	7.0	124
13	XBP1s levels are implicated in the biology and outcome of myeloma mediating different clinical outcomes to thalidomide-based treatments. Blood, 2010, 116, 250-253.	1.4	107
14	MMSET deregulation affects cell cycle progression and adhesion regulons in t(4;14) myeloma plasma cells. Haematologica, 2009, 94, 78-86.	3.5	106
15	Genetic Factors Underlying the Risk of Thalidomide-Related Neuropathy in Patients With Multiple Myeloma. Journal of Clinical Oncology, 2011, 29, 797-804.	1.6	95
16	Genome-wide Analysis Reveals Extensive Functional Interaction between DNA Replication Initiation and Transcription in the Genome of Trypanosoma brucei. Cell Reports, 2012, 2, 185-197.	6.4	93
17	Deletions of <i>CDKN2C</i> in Multiple Myeloma: Biological and Clinical Implications. Clinical Cancer Research, 2008, 14, 6033-6041.	7.0	88
18	The Streamlined Genome of Phytomonas spp. Relative to Human Pathogenic Kinetoplastids Reveals a Parasite Tailored for Plants. PLoS Genetics, 2014, 10, e1004007.	3.5	66

NICHOLAS J DICKENS

#	Article	IF	CITATIONS
19	Genetic associations with thalidomide mediated venous thrombotic events in myeloma identified using targeted genotyping. Blood, 2008, 112, 4924-4934.	1.4	65
20	Cadherin-like domains in α-dystroglycan, α/ε-sarcoglycan and yeast and bacterial proteins. Current Biology, 2002, 12, R197-R199.	3.9	58
21	A Leishmania infantum genetic marker associated with miltefosine treatment failure for visceral leishmaniasis. EBioMedicine, 2018, 36, 83-91.	6.1	56
22	Mapping replication dynamics in Trypanosoma brucei reveals a link with telomere transcription and antigenic variation. ELife, 2016, 5, .	6.0	51
23	Genome-wide mapping reveals single-origin chromosome replication in Leishmania, a eukaryotic microbe. Genome Biology, 2015, 16, 230.	8.8	46
24	Sterol 14α-demethylase mutation leads to amphotericin B resistance in Leishmania mexicana. PLoS Neglected Tropical Diseases, 2017, 11, e0005649.	3.0	43
25	Genomic instability at the locus of sterol C24-methyltransferase promotes amphotericin B resistance in Leishmania parasites. PLoS Neglected Tropical Diseases, 2019, 13, e0007052.	3.0	39
26	Trypanosoma brucei ATR Links DNA Damage Signaling during Antigenic Variation with Regulation of RNA Polymerase I-Transcribed Surface Antigens. Cell Reports, 2020, 30, 836-851.e5.	6.4	24
27	The Comparative Genomics and Phylogenomics of <i>Leishmania Amazonensis</i> Parasite. Evolutionary Bioinformatics, 2014, 10, EBO.S13759.	1.2	23
28	eQTL Explorer: integrated mining of combined genetic linkage and expression experiments. Bioinformatics, 2006, 22, 509-511.	4.1	22
29	Genome-Wide Co-Expression Analysis in Multiple Tissues. PLoS ONE, 2008, 3, e4033.	2.5	21
30	Comparative genomics of Tunisian Leishmania major isolates causing human cutaneous leishmaniasis with contrasting clinical severity. Infection, Genetics and Evolution, 2017, 50, 110-120.	2.3	16
31	Defining the sediment prokaryotic communities of the Indian River Lagoon, FL, USA, an Estuary of National Significance. PLoS ONE, 2020, 15, e0236305.	2.5	9
32	Genome-Wide Identification of Gene Expression Networks Affected by Genomic Changes in Multiple Myeloma Blood, 2007, 110, 2494-2494.	1.4	4
33	THoR: a tool for domain discovery and curation of multiple alignments. Genome Biology, 2003, 4, R52.	9.6	3
34	Zygote morphogenesis but not the establishment of cell polarity in Plasmodium berghei is controlled by the small GTPase, RAB11A. PLoS Pathogens, 2020, 16, e1008091.	4.7	3
35	Genetic Variations Associated with Overall and Progression-Free Survival in Multiple Myeloma Patients Treated with Thalidomide Combinations Blood, 2009, 114, 426-426.	1.4	2
36	Transcriptional differentiation of Trypanosoma brucei during in vitro acquisition of resistance to acoziborole. PLoS Neglected Tropical Diseases, 2021, 15, e0009939.	3.0	2

NICHOLAS J DICKENS

#	Article	IF	CITATIONS
37	Integration of Gene Mapping and Expression Arrays Identifies Mechanisms by Which Genes Are Dysregulated as a Result of Copy Number Loss and Gain Associated with IgH Translocations in Multiple Myeloma Blood, 2007, 110, 395-395.	1.4	1
38	The Impact of Constitutional Copy Number Variants in Myeloma. Blood, 2008, 112, 496-496.	1.4	1
39	Mutation and Methylation Analysis of WWOX and CYLD on 16q; Potential Tumor Suppressor Genes in Myeloma Blood, 2007, 110, 2473-2473.	1.4	0
40	Screening of Homozygous Deletions Identifies Key Deregulated Genes and Pathways in Multiple Myeloma Blood, 2007, 110, 2474-2474.	1.4	0
41	An Integrated Pharmacogenomic Strategy for the Definition of Thalidomide Response Signatures in Presenting Cases of Multiple Myeloma Blood, 2007, 110, 2493-2493.	1.4	Ο
42	Molecular Characterization of Human Multiple Myeloma Cell Lines by Genome-Wide Profiling Identifies Kinase Pathway Alterations Blood, 2008, 112, 1694-1694.	1.4	0
43	High Resolution Genomic Profiling Using Single Nucleotide Polymorphism Microarrays Identifies Multiple Novel Genomic Minimally Deleted Regions in Multiple Myeloma. Blood, 2008, 112, 625-625.	1.4	Ο
44	Homozygous Deletions Can Be Used to Define a Cell Death Specific Gene Expression Signature Able to Predict Outcome in Myeloma. Blood, 2008, 112, 2725-2725.	1.4	0
45	Gene Expression Profiling Classifies Splenic Marginal Zone Lymphoma and Hairy Cell Leukemia-Variant as Related Diseases That Are Distinct From Typical Hairy Cell Leukemia Blood, 2009, 114, 3467-3467.	1.4	Ο
46	Global Methylation Array Analysis of Multiple Myeloma Samples Indicate An Alteration of Epigenetics During the Transition From MGUS to Myeloma and An Increased Frequency of Gene Methylation in t(4;14) Myeloma Blood, 2009, 114, 121-121.	1.4	0
47	Molecular Characterization of Human Multiple Myeloma Cell Lines by Genome-Wide Profiling Blood, 2009, 114, 1793-1793.	1.4	Ο
48	UTX, a Histone Demethylase, Is Inactivated through Homozygous Deletion, Mutation, and DNA Methylation in Multiple Myeloma Blood, 2009, 114, 1798-1798.	1.4	0
49	Title is missing!. , 2020, 16, e1008091.		Ο
50	Title is missing!. , 2020, 16, e1008091.		0
51	Title is missing!. , 2020, 16, e1008091.		Ο
52	Title is missing!. , 2020, 16, e1008091.		0
53	Title is missing!. , 2020, 16, e1008091.		0
54	Title is missing!. , 2020, 16, e1008091.		0

4