
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7416456/publications.pdf Version: 2024-02-01

DETED REDE

#	Article	IF	CITATIONS
1	The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 102-108.	1.9	557
2	Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study. Lancet Neurology, The, 2012, 11, 232-240.	10.2	493
3	Executive dysfunction is a negative prognostic indicator in patients with ALS without dementia. Neurology, 2011, 76, 1263-1269.	1.1	324
4	Rate of familial amyotrophic lateral sclerosis: a systematic review and meta-analysis. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 623-627.	1.9	283
5	Cognitive changes predict functional decline in ALS. Neurology, 2013, 80, 1590-1597.	1.1	237
6	Multiparametric MRI study of ALS stratified for the <i>C9orf72</i> genotype. Neurology, 2013, 81, 361-369.	1.1	150
7	Basal ganglia involvement in amyotrophic lateral sclerosis. Neurology, 2013, 81, 2107-2115.	1.1	147
8	A large-scale multicentre cerebral diffusion tensor imaging study in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 570-579.	1.9	138
9	Neuroimaging in amyotrophic lateral sclerosis. Biomarkers in Medicine, 2012, 6, 319-337.	1.4	133
10	Grey matter correlates of clinical variables in amyotrophic lateral sclerosis (ALS): a neuroimaging study of ALS motor phenotype heterogeneity and cortical focality. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 766-773.	1.9	121
11	Proposed criteria for familial amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2011, 12, 157-159.	2.1	120
12	Aggregation of neurologic and neuropsychiatric disease in amyotrophic lateral sclerosis kindreds: A populationâ€based case–control cohort study of familial and sporadic amyotrophic lateral sclerosis. Annals of Neurology, 2013, 74, 699-708.	5.3	116
13	Machine Learning in Amyotrophic Lateral Sclerosis: Achievements, Pitfalls, and Future Directions. Frontiers in Neuroscience, 2019, 13, 135.	2.8	102
14	Lessons of ALS imaging: Pitfalls and future directions — A critical review. NeuroImage: Clinical, 2014, 4, 436-443.	2.7	98
15	Basal ganglia pathology in ALS is associated with neuropsychological deficits. Neurology, 2015, 85, 1301-1309.	1.1	96
16	Palliative care in amyotrophic lateral sclerosis: a review of current international guidelines and initiatives. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 413-418.	1.9	95
17	Clinical Measures of Bulbar Dysfunction in ALS. Frontiers in Neurology, 2019, 10, 106.	2.4	95
18	A ferroptosis–based panel of prognostic biomarkers for Amyotrophic Lateral Sclerosis. Scientific Reports, 2019, 9, 2918.	3.3	91

#	Article	IF	CITATIONS
19	Connectivity-based characterisation of subcortical grey matter pathology in frontotemporal dementia and ALS: a multimodal neuroimaging study. Brain Imaging and Behavior, 2018, 12, 1696-1707.	2.1	89
20	Predicting prognosis in amyotrophic lateral sclerosis: a simple algorithm. Journal of Neurology, 2015, 262, 1447-1454.	3.6	84
21	Longitudinal structural changes in ALS: a three time-point imaging study of white and gray matter degeneration. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 232-241.	1.7	82
22	Presymptomatic and longitudinal neuroimaging in neurodegeneration—from snapshots to motion picture: a systematic review. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 1089-1096.	1.9	78
23	Characteristic Increases in EEG Connectivity Correlate With Changes of Structural MRI in Amyotrophic Lateral Sclerosis. Cerebral Cortex, 2019, 29, 27-41.	2.9	76
24	Clinical and Radiological Markers of Extra-Motor Deficits in Amyotrophic Lateral Sclerosis. Frontiers in Neurology, 2018, 9, 1005.	2.4	73
25	Survival prediction in Amyotrophic lateral sclerosis based on MRI measures and clinical characteristics. BMC Neurology, 2017, 17, 73.	1.8	71
26	Presymptomatic spinal cord pathology in <i>c9orf72</i> mutation carriers: A longitudinal neuroimaging study. Annals of Neurology, 2019, 86, 158-167.	5.3	71
27	Primary lateral sclerosis: a distinct entity or part of the ALS spectrum?. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 133-145.	1.7	69
28	Tracking a Fast-Moving Disease: Longitudinal Markers, Monitoring, and Clinical Trial Endpoints in ALS. Frontiers in Neurology, 2019, 10, 229.	2.4	67
29	Virtual brain biopsies in amyotrophic lateral sclerosis: Diagnostic classification based on in vivo pathological patterns. NeuroImage: Clinical, 2017, 15, 653-658.	2.7	66
30	Absence of consensus in diagnostic criteria for familial neurodegenerative diseases. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 365-367.	1.9	65
31	Patterned functional network disruption in amyotrophic lateral sclerosis. Human Brain Mapping, 2019, 40, 4827-4842.	3.6	65
32	Adaptive functional reorganization in amyotrophic lateral sclerosis: coexisting degenerative and compensatory changes. European Journal of Neurology, 2020, 27, 121-128.	3.3	65
33	Development of an Automated MRI-Based Diagnostic Protocol for Amyotrophic Lateral Sclerosis Using Disease-Specific Pathognomonic Features: A Quantitative Disease-State Classification Study. PLoS ONE, 2016, 11, e0167331.	2.5	65
34	Identifying behavioural changes in ALS: Validation of the Beaumont Behavioural Inventory (BBI). Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 68-73.	1.7	64
35	A pharmaco-metabolomics approach in a clinical trial of ALS: Identification of predictive markers of progression. PLoS ONE, 2018, 13, e0198116.	2.5	64
36	Measurement of Social Cognition in Amyotrophic Lateral Sclerosis: A Population Based Study. PLoS ONE, 2016, 11, e0160850.	2.5	63

#	Article	IF	CITATIONS
37	The segmental diffusivity profile of amyotrophic lateral sclerosis associated white matter degeneration. European Journal of Neurology, 2016, 23, 1361-1371.	3.3	63
38	A Crossâ€sectional populationâ€based investigation into behavioral change in amyotrophic lateral sclerosis: subphenotypes, staging, cognitive predictors, and survival. Annals of Clinical and Translational Neurology, 2017, 4, 305-317.	3.7	63
39	Neuroimaging patterns along the ALS-FTD spectrum: a multiparametric imaging study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 611-623.	1.7	63
40	Multimodal spinal cord MRI offers accurate diagnostic classification in ALS. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 1220-1221.	1.9	62
41	Widespread subcortical grey matter degeneration in primary lateral sclerosis: a multimodal imaging study with genetic profiling. NeuroImage: Clinical, 2019, 24, 102089.	2.7	60
42	Post-polio Syndrome: More Than Just a Lower Motor Neuron Disease. Frontiers in Neurology, 2019, 10, 773.	2.4	59
43	Hippocampal pathology in amyotrophic lateral sclerosis: selective vulnerability of subfields and their associated projections. Neurobiology of Aging, 2019, 84, 178-188.	3.1	59
44	Brainstem pathology in amyotrophic lateral sclerosis and primary lateral sclerosis: A longitudinal neuroimaging study. NeuroImage: Clinical, 2019, 24, 102054.	2.7	59
45	Patterns of cerebral and cerebellar white matter degeneration in ALS: FigureÂ1. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 468-470.	1.9	58
46	The clinical and radiological profile of primary lateral sclerosis: a population-based study. Journal of Neurology, 2019, 266, 2718-2733.	3.6	58
47	The selective anatomical vulnerability of ALS: †disease-defining' and †disease-defying' brain regions. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 561-570.	1.7	57
48	Imaging Cerebral Activity in Amyotrophic Lateral Sclerosis. Frontiers in Neurology, 2018, 9, 1148.	2.4	55
49	Spinal Cord Imaging in Amyotrophic Lateral Sclerosis: Historical Concepts—Novel Techniques. Frontiers in Neurology, 2019, 10, 350.	2.4	55
50	An exploration of the spectrum of peri -ictal MRI change; a comprehensive literature review. Seizure: the Journal of the British Epilepsy Association, 2017, 50, 19-32.	2.0	54
51	The changing landscape of motor neuron disease imaging: the transition from descriptive studies to precision clinical tools. Current Opinion in Neurology, 2018, 31, 431-438.	3.6	54
52	The spinal and cerebral profile of adult spinal-muscular atrophy: A multimodal imaging study. NeuroImage: Clinical, 2019, 21, 101618.	2.7	54
53	Sexual dimorphism in ALS: Exploring gender-specific neuroimaging signatures. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 235-243.	1.7	53
54	Revisiting the spectrum of lower motor neuron diseases with snake eyes appearance on magnetic resonance imaging. European Journal of Neurology, 2014, 21, 1233-1241.	3.3	52

#	Article	IF	CITATIONS
55	Connectomeâ€Based Propagation Model in Amyotrophic Lateral Sclerosis. Annals of Neurology, 2020, 87, 725-738.	5.3	51
56	Spinal cord markers in ALS: Diagnostic and biomarker considerations. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2012, 13, 407-415.	2.1	50
57	On the development of markers for pathological TDP-43 in amyotrophic lateral sclerosis with and without dementia. Progress in Neurobiology, 2011, 95, 649-662.	5.7	47
58	Discordant performance on the †Reading the Mind in the Eyes' Test, based on disease onset in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 467-472.	1.7	46
59	Extrapyramidal deficits in ALS: a combined biomechanical and neuroimaging study. Journal of Neurology, 2018, 265, 2125-2136.	3.6	45
60	"Switchboard―malfunction in motor neuron diseases: Selective pathology of thalamic nuclei in amyotrophic lateral sclerosis and primary lateral sclerosis. NeuroImage: Clinical, 2020, 27, 102300.	2.7	45
61	Pathological Crying and Laughing in Motor Neuron Disease: Pathobiology, Screening, Intervention. Frontiers in Neurology, 2019, 10, 260.	2.4	40
62	Development and validation of a 1-year survival prognosis estimation model for Amyotrophic Lateral Sclerosis using manifold learning algorithm UMAP. Scientific Reports, 2020, 10, 13378.	3.3	38
63	Genotype-associated cerebellar profiles in ALS: focal cerebellar pathology and cerebro-cerebellar connectivity alterations. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 1197-1205.	1.9	36
64	The motor unit number index (MUNIX) profile of patients with adult spinal muscular atrophy. Clinical Neurophysiology, 2018, 129, 2333-2340.	1.5	33
65	Amygdala pathology in amyotrophic lateral sclerosis and primary lateral sclerosis. Journal of the Neurological Sciences, 2020, 417, 117039.	0.6	33
66	Neural Correlates of Motor Imagery of Gait in Amyotrophic Lateral Sclerosis. Journal of Magnetic Resonance Imaging, 2021, 53, 223-233.	3.4	33
67	The French national protocol for Kennedy's disease (SBMA): consensus diagnostic and management recommendations. Orphanet Journal of Rare Diseases, 2020, 15, 90.	2.7	31
68	Biomarkers of Spinal and Bulbar Muscle Atrophy (SBMA): A Comprehensive Review. Frontiers in Neurology, 2018, 9, 844.	2.4	29
69	Evolving diagnostic criteria in primary lateral sclerosis: The clinical and radiological basis of "probable PLS― Journal of the Neurological Sciences, 2020, 417, 117052.	0.6	28
70	The presymptomatic phase of amyotrophic lateral sclerosis: are we merely scratching the surface?. Journal of Neurology, 2021, 268, 4607-4629.	3.6	28
71	Pathological neural networks and artificial neural networks in ALS: diagnostic classification based on pathognomonic neuroimaging features. Journal of Neurology, 2022, 269, 2440-2452.	3.6	28
72	The Clinical and Radiological Spectrum of Hippocampal Pathology in Amyotrophic Lateral Sclerosis. Frontiers in Neurology, 2018, 9, 523.	2.4	27

#	Article	IF	CITATIONS
73	Neurophysiological markers of network dysfunction in neurodegenerative diseases. NeuroImage: Clinical, 2019, 22, 101706.	2.7	27
74	Revisiting the pathoanatomy of pseudobulbar affect: mechanisms beyond corticobulbar dysfunction. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 4-6.	1.7	26
75	Resting-state EEG reveals four subphenotypes of amyotrophic lateral sclerosis. Brain, 2022, 145, 621-631.	7.6	26
76	Split-hand and split-limb phenomena in amyotrophic lateral sclerosis: pathophysiology, electrophysiology and clinical manifestations. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 1126-1130.	1.9	25
77	Phenotypic categorisation of individual subjects with motor neuron disease based on radiological disease burden patterns: A machine-learning approach. Journal of the Neurological Sciences, 2022, 432, 120079.	0.6	25
78	Mismatch Negativity as an Indicator of Cognitive Sub-Domain Dysfunction in Amyotrophic Lateral Sclerosis. Frontiers in Neurology, 2017, 8, 395.	2.4	24
79	Extra-motor cerebral changes and manifestations in primary lateral sclerosis. Brain Imaging and Behavior, 2021, 15, 2283-2296.	2.1	24
80	Manifold learning for amyotrophic lateral sclerosis functional loss assessment. Journal of Neurology, 2021, 268, 825-850.	3.6	23
81	Absence of hyperexcitability of spinal motoneurons in patients with amyotrophic lateral sclerosis. Journal of Physiology, 2019, 597, 5445-5467.	2.9	22
82	Cognitive reserve in amyotrophic lateral sclerosis (ALS): a population-based longitudinal study. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 460-465.	1.9	22
83	Degenerative and regenerative processes in amyotrophic lateral sclerosis: motor reserve, adaptation and putative compensatory changes. Neural Regeneration Research, 2021, 16, 1208.	3.0	21
84	Neuroimaging in primary lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 18-27.	1.7	21
85	Dysfunction of attention switching networks in amyotrophic lateral sclerosis. NeuroImage: Clinical, 2019, 22, 101707.	2.7	18
86	Visual encoding, consolidation, and retrieval in amyotrophic lateral sclerosis: executive function as a mediator, and predictor of performance. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 193-201.	1.7	17
87	Deciphering neurodegeneration. Neurology, 2017, 89, 1758-1759.	1.1	17
88	Thalamic, hippocampal and basal ganglia pathology in primary lateral sclerosis and amyotrophic lateral sclerosis: Evidence from quantitative imaging data. Data in Brief, 2020, 29, 105115.	1.0	17
89	Propagation patterns in motor neuron diseases: Individual and phenotype-associated disease-burden trajectories across the UMN-LMN spectrum of MNDs. Neurobiology of Aging, 2022, 109, 78-87.	3.1	17
90	Progressive brainstem pathology in motor neuron diseases: Imaging data from amyotrophic lateral sclerosis and primary lateral sclerosis. Data in Brief, 2020, 29, 105229.	1.0	16

#	Article	IF	CITATIONS
91	Development of new outcome measures for adult SMA type III and IV: a multimodal longitudinal study. Journal of Neurology, 2021, 268, 1792-1802.	3.6	16
92	Infratentorial pathology in frontotemporal dementia: cerebellar grey and white matter alterations in FTD phenotypes. Journal of Neurology, 2021, 268, 4687-4697.	3.6	16
93	Frontotemporal Pathology in Motor Neuron Disease Phenotypes: Insights From Neuroimaging. Frontiers in Neurology, 2021, 12, 723450.	2.4	16
94	Muscle cells of sporadic amyotrophic lateral sclerosis patients secrete neurotoxic vesicles. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 1385-1402.	7.3	16
95	Consideration of <i>C9orf72</i> -associated ALS-FTD as a neurodevelÂopmental disorder: insights from neuroimaging. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 1138-1138.	1.9	15
96	MRI data confirm the selective involvement of thalamic and amygdalar nuclei in amyotrophic lateral sclerosis and primary lateral sclerosis. Data in Brief, 2020, 32, 106246.	1.0	15
97	Cerebro-cerebellar white matter connectivity in bipolar disorder and associated polarity subphenotypes. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 104, 110034.	4.8	15
98	The imaging signature of C9orf72 hexanucleotide repeat expansions: implications for clinical trials and therapy development. Brain Imaging and Behavior, 2021, 15, 2693-2719.	2.1	15
99	Primary Lateral Sclerosis: Clinical, radiological and molecular features. Revue Neurologique, 2022, 178, 196-205.	1.5	15
100	Cortical progression patterns in individual ALS patients across multiple timepoints: a mosaic-based approach for clinical use. Journal of Neurology, 2021, 268, 1913-1926.	3.6	15
101	Clusters of anatomical disease-burden patterns in ALS: a data-driven approach confirms radiological subtypes. Journal of Neurology, 2022, 269, 4404-4413.	3.6	15
102	Cerebellar pathology in motor neuron disease: neuroplasticity and neurodegeneration. Neural Regeneration Research, 2022, 17, 2335.	3.0	14
103	Extra-motor manifestations in post-polio syndrome (PPS): fatigue, cognitive symptoms and radiological features. Neurological Sciences, 2021, 42, 4569-4581.	1.9	13
104	Cognitive network hyperactivation and motor cortex decline correlate with ALS prognosis. Neurobiology of Aging, 2021, 104, 57-70.	3.1	13
105	"Sand-watch―spinal cord: a case of inferior cervical spinal cord atrophy. Journal of Neurology, 2014, 261, 235-237.	3.6	12
106	Increased cerebral integrity metrics in poliomyelitis survivors: putative adaptation to longstanding lower motor neuron degeneration. Journal of the Neurological Sciences, 2021, 424, 117361.	0.6	12
107	Focal thalamus pathology in frontotemporal dementia: Phenotype-associated thalamic profiles. Journal of the Neurological Sciences, 2022, 436, 120221.	0.6	12
108	Neurometabolic Alterations in Motor Neuron Disease: Insights from Magnetic Resonance Spectroscopy. Journal of Integrative Neuroscience, 2022, 21, 87.	1.7	12

#	Article	IF	CITATIONS
109	The spectrum of peri-ictal MRI changes; four illustrative cases. Seizure: the Journal of the British Epilepsy Association, 2017, 50, 189-193.	2.0	11
110	Carbapenems and valproate: A consumptive relationship. Epilepsia Open, 2017, 2, 107-111.	2.4	11
111	Waterskier's Hirayama syndrome. Journal of Neurology, 2011, 258, 2078-2079.	3.6	10
112	A second-generation Irish genome-wide association study for amyotrophic lateral sclerosis. Neurobiology of Aging, 2015, 36, 1221.e7-1221.e13.	3.1	10
113	Imaging and clinical data indicate considerable disease burden in â€~probable' PLS: Patients with UMN symptoms for 2–4 years. Data in Brief, 2020, 32, 106247.	1.0	10
114	Evaluation and categorisation of individual patients based on white matter profiles: Single-patient diffusion data interpretation in neurodegeneration. Journal of the Neurological Sciences, 2021, 428, 117584.	0.6	10
115	Motor imagery in amyotrophic lateral Sclerosis: An fMRI study of postural control. NeuroImage: Clinical, 2022, 35, 103051.	2.7	10
116	From qualitative radiological cues to machine learning: MRI-based diagnosis in neurodegeneration. Future Neurology, 2017, 12, 5-8.	0.5	9
117	Alterations in somatosensory, visual and auditory pathways in amyotrophic lateral sclerosis: an under-recognised facet of ALS. Journal of Integrative Neuroscience, 2022, 21, 88.	1.7	9
118	Furosemide Unmasks Inhibitory Dysfunction after Spinal Cord Injury in Humans: Implications for Spasticity. Journal of Neurotrauma, 2019, 36, 1469-1477.	3.4	8
119	Cerebellar degeneration in primary lateral sclerosis: an under-recognized facet of PLS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2022, 23, 542-553.	1.7	8
120	The changing landscape of neuroimaging in frontotemporal lobar degeneration: from group-level observations to single-subject data interpretation. Expert Review of Neurotherapeutics, 2022, 22, 179-207.	2.8	8
121	Mapping cortical disease-burden at individual-level in frontotemporal dementia: implications for clinical care and pharmacological trials. Brain Imaging and Behavior, 2022, 16, 1196-1207.	2.1	7
122	Machineâ€learning in motor neuron diseases: Prospects and pitfalls. European Journal of Neurology, 2022, 29, 2555-2556.	3.3	7
123	The histological correlates of imaging metrics: postmortem validation of in vivo findings. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 457-460.	1.7	6
124	Neuroimaging data indicate divergent mesial temporal lobe profiles in amyotrophic lateral sclerosis, Alzheimer's disease and healthy aging. Data in Brief, 2020, 28, 104991.	1.0	6
125	Preface: promoting research in PLS: current knowledge and future challenges. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 1-2.	1.7	6
126	White matter microstructure alterations in frontotemporal dementia: Phenotypeâ€associated signatures and singleâ€subject interpretation. Brain and Behavior, 2022, 12, e2500.	2.2	6

#	Article	IF	CITATIONS
127	Fecundity in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 204-206.	1.7	5
128	Imaging data reveal divergent longitudinal trajectories in PLS, ALS and poliomyelitis survivors: Group-level and single-subject traits. Data in Brief, 2021, 39, 107484.	1.0	5
129	Occulomotor Neural Integrator Dysfunction in Multiple Sclerosis: Insights From Neuroimaging. Frontiers in Neurology, 2018, 9, 691.	2.4	4
130	The strength of corticomotoneuronal drive underlies ALS split phenotypes and reflects early upper motor neuron dysfunction. Brain and Behavior, 2021, 11, e2403.	2.2	4
131	Cerebellar remodelling decades after spinal cord insult: neuroplasticity in poliomyelitis survivors. Journal of Integrative Neuroscience, 2022, 21, 065.	1.7	4
132	Biomarker development in amyotrophic lateral sclerosis: Challenges and viable strategies. European Journal of Neurology, 2022, 29, 1867-1868.	3.3	4
133	Imaging data indicate cerebral reorganisation in poliomyelitis survivors: Possible compensation for longstanding lower motor neuron pathology. Data in Brief, 2021, 38, 107316.	1.0	3
134	'Khatatonia' - cathinone-induced hypertensive encephalopathy. Netherlands Journal of Medicine, 2017, 75, 448-450.	0.5	3
135	Palliative Care and End of Life Care. , 2016, , 305-319.		2
136	From pneumomyelography to cord tractography: historical perspectives on spinal imaging. Future Neurology, 2017, 12, 121-124.	0.5	2
137	Editorial: Biomarkers and Clinical Indicators in Motor Neuron Disease. Frontiers in Neurology, 2019, 10, 1318.	2.4	2
138	The neuroradiology of upper motor neuron degeneration: PLS, HSP, ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2022, 23, 1-3.	1.7	2
139	Clinical Reasoning: Reversible gait ataxia. Neurology, 2017, 88, e145-e149.	1.1	1
140	Neuropsychological Assessment Should Always be Considered in Myotonic Dystrophy Type 2. Cognitive and Behavioral Neurology, 2021, 34, 1-10.	0.9	1
141	The diagnostic challenge of primary lateral sclerosis: the integration of clinical, genetic and radiological cues. European Journal of Neurology, 2021, 28, 3875-3876.	3.3	1
142	Subcortical gray matter structures: a future biomarker for amyotrophic lateral sclerosis?. Future Neurology, 2014, 9, 109-111.	0.5	0
143	SMA: REGISTRIES, BIOMARKERS & OUTCOME MEASURES. Neuromuscular Disorders, 2020, 30, S99-S100.	0.6	0
144	Commissural fiber degeneration in motor neuron diseases. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 321-323.	1.7	0