Catia Sternini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7416314/publications.pdf Version: 2024-02-01

CATIA STEDNINI

#	Article	IF	CITATIONS
1	Neurochemical Profile of Enteric Neurons in the Submucosal Plexuses of Pig vs. Human Colon. FASEB Journal, 2022, 36, .	0.5	Ο
2	NIH Workshop Report: sensory nutrition and disease. American Journal of Clinical Nutrition, 2021, 113, 232-245.	4.7	19
3	Quantitative analysis of enteric neurons containing choline acetyltransferase and nitric oxide synthase immunoreactivities in the submucosal and myenteric plexuses of the porcine colon. Cell and Tissue Research, 2021, 383, 645-654.	2.9	11
4	Evidence of enteric angiopathy and neuromuscular hypoxia in patients with mitochondrial neurogastrointestinal encephalomyopathy. American Journal of Physiology - Renal Physiology, 2021, 320, G768-G779.	3.4	9
5	Pharmacological characterization of naloxegol: In vitro and in vivo studies. European Journal of Pharmacology, 2021, 903, 174132.	3.5	2
6	Novel understanding on genetic mechanisms of enteric neuropathies leading to severe gut dysmotility. European Journal of Histochemistry, 2021, 65, .	1.5	5
7	"SPARC―Neurochemical Profile of Enteric Neurons in the Inner and Outer Submucosal Plexus of The Ascending and Descending Colon of Adult Pigs. FASEB Journal, 2020, 34, 1-1.	0.5	Ο
8	µâ€opioid receptor, βâ€endorphin, and cannabinoid receptorâ€2 are increased in the colonic mucosa of irritable bowel syndrome patients. Neurogastroenterology and Motility, 2019, 31, e13688.	3.0	25
9	Enteric neuron density correlates with clinical features of severe gut dysmotility. American Journal of Physiology - Renal Physiology, 2019, 317, G793-G801.	3.4	15
10	Gut epithelial and vascular barrier abnormalities in patients with chronic intestinal pseudoâ€obstruction. Neurogastroenterology and Motility, 2019, 31, e13652.	3.0	6
11	Expression of the Bitter Taste Receptor, T2R38, in Enteroendocrine Cells of the Colonic Mucosa of Overweight/Obese vs. Lean Subjects. PLoS ONE, 2016, 11, e0147468.	2.5	52
12	Regulation of α-Transducin and α-Gustducin Expression by a High Protein Diet in the Pig Gastrointestinal Tract. PLoS ONE, 2016, 11, e0148954.	2.5	9
13	Insights into the Role of Opioid Receptors in the GI Tract: Experimental Evidence and Therapeutic Relevance. Handbook of Experimental Pharmacology, 2016, 239, 363-378.	1.8	74
14	Prucalopride exerts neuroprotection in human enteric neurons. American Journal of Physiology - Renal Physiology, 2016, 310, G768-G775.	3.4	34
15	Diet-Induced Regulation of Bitter Taste Receptor Subtypes in the Mouse Gastrointestinal Tract. PLoS ONE, 2014, 9, e107732.	2.5	53
16	Opioid-Induced Mitogen-Activated Protein Kinase Signaling in Rat Enteric Neurons following Chronic Morphine Treatment. PLoS ONE, 2014, 9, e110230.	2.5	25
17	Effects of methylnaltrexone on guinea pig gastrointestinal motility. Naunyn-Schmiedeberg's Archives of Pharmacology, 2013, 386, 279-286.	3.0	5
18	Enteroendocrine profile of α-transducin immunoreactive cells in the gastrointestinal tract of the European sea bass (Dicentrarchus labrax). Fish Physiology and Biochemistry, 2013, 39, 1555-1565.	2.3	13

CATIA STERNINI

#	Article	IF	CITATIONS
19	Expression and regulation of αâ€ŧransducin in the pig gastrointestinal tract. Journal of Cellular and Molecular Medicine, 2013, 17, 466-474.	3.6	19
20	In Search of a Role for Carbonation: Is This a Good or Bad Taste?. Gastroenterology, 2013, 145, 500-503.	1.3	5
21	Ligandâ€induced μ opioid receptor internalization in enteric neurons following chronic treatment with the opiate fentanyl. Journal of Neuroscience Research, 2013, 91, 854-860.	2.9	11
22	Protective role of μ opioid receptor activation in intestinal inflammation induced by mesenteric ischemia/reperfusion in mice. Journal of Neuroscience Research, 2012, 90, 2146-2153.	2.9	26
23	Morphine Induces μ Opioid Receptor Endocytosis in Guinea Pig Enteric Neurons Following Prolonged Receptor Activation. Gastroenterology, 2011, 140, 618-626.	1.3	37
24	Amino acid sensing by enteroendocrine STC-1 cells: role of the Na+-coupled neutral amino acid transporter 2. American Journal of Physiology - Cell Physiology, 2010, 298, C1401-C1413.	4.6	30
25	Central Fos expression and conditioned flavor avoidance in rats following intragastric administration of bitter taste receptor ligands. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R528-R536.	1.8	45
26	Galanin inhibition of voltageâ€dependent Ca ²⁺ influx in rat cultured myenteric neurons is mediated by galanin receptor 1. Journal of Neuroscience Research, 2009, 87, 1107-1114.	2.9	15
27	Role of CCK ₁ and Y ₂ receptors in activation of hindbrain neurons induced by intragastric administration of bitter taste receptor ligands. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R33-R38.	1.8	73
28	Enteroendocrine cells: a site of â€~taste' in gastrointestinal chemosensing. Current Opinion in Endocrinology, Diabetes and Obesity, 2008, 15, 73-78.	2.3	310
29	Gastrointestinal (GI) infusion of bitter tastants supports conditioned flavor avoidance (CFA) and activates central neural Fos expression. FASEB Journal, 2008, 22, 1185.5.	0.5	0
30	Taste Receptors in the Gastrointestinal Tract. IV. Functional implications of bitter taste receptors in gastrointestinal chemosensing. American Journal of Physiology - Renal Physiology, 2007, 292, G457-G461.	3.4	103
31	Taste receptor signaling in the mammalian gut. Current Opinion in Pharmacology, 2007, 7, 557-562.	3.5	176
32	Protective Effect of Proteinase-Activated Receptor 2 Activation on Motility Impairment and Tissue Damage Induced by Intestinal Ischemia/Reperfusion in Rodents. American Journal of Pathology, 2006, 169, 177-188.	3.8	48
33	Colocalization of the α-subunit of gustducin with PYY and GLP-1 in L cells of human colon. American Journal of Physiology - Renal Physiology, 2006, 291, G792-G802.	3.4	233
34	Galanin in the Gastrointestinal Tract: Distribution and Function. , 2006, , 1037-1042.		0
35	Galanin receptors in the rat gastrointestinal tract. Neuropeptides, 2005, 39, 349-352.	2.2	44
36	Release of Transgenic Human Insulin from Gastric G Cells: A Novel Approach for the Amelioration of Diabetes. Endocrinology, 2005, 146, 2610-2619.	2.8	34

CATIA STERNINI

#	Article	IF	CITATIONS
37	Expression of galanin receptor messenger RNAs in different regions of the rat gastrointestinal tract. Peptides, 2005, 26, 815-819.	2.4	22
38	N-Methyl-d-Aspartate Receptors Mediate Endogenous Opioid Release in Enteric Neurons After Abdominal Surgery. Gastroenterology, 2005, 128, 2009-2019.	1.3	28
39	5-HT7 Receptors Modulate Peristalsis and Accommodation in the Guinea Pig Ileum. Gastroenterology, 2005, 129, 1557-1566.	1.3	66
40	Neurochemically distinct classes of myenteric neurons express the ?-opioid receptor in the guinea pig ileum. Journal of Comparative Neurology, 2003, 458, 404-411.	1.6	34
41	Expression of 5-HT ₃ receptors by extrinsic duodenal afferents contribute to intestinal inhibition of gastric emptying. American Journal of Physiology - Renal Physiology, 2003, 284, G367-G372.	3.4	138
42	Expression of 5-HT3 receptors in the rat gastrointestinal tract. Gastroenterology, 2002, 123, 217-226.	1.3	144
43	Distribution of galanin receptor 1 immunoreactivity in the rat stomach and small intestine. Journal of Comparative Neurology, 2002, 450, 292-302.	1.6	51
44	III. μ-Opioid receptors in the enteric nervous system. American Journal of Physiology - Renal Physiology, 2001, 281, G8-G15.	3.4	42
45	Expression of the human insulin gene in the gastric G cells of transgenic mice. Transgenic Research, 2001, 10, 329-341.	2.4	10
46	Neurotrophin-3 and neurotrophin receptor immunoreactivity in peptidergic enteric neurons. Peptides, 2000, 21, 1421-1426.	2.4	20
47	Expression of cholecystokinin a receptors in neurons innervating the rat stomach and intestine. Gastroenterology, 1999, 117, 1136-1146.	1.3	80
48	Somatostatin 2A receptor is expressed by enteric neurons, and by interstitial cells of Cajal and enterochromaffin-like cells of the gastrointestinal tract. Journal of Comparative Neurology, 1997, 386, 396-408.	1.6	93
49	Neurokinin 1 receptor expression in the rat retina. Journal of Comparative Neurology, 1997, 389, 496-507.	1.6	27
50	Somatostatin 2A receptor is expressed by enteric neurons, and by interstitial cells of Cajal and enterochromaffinâ€like cells of the gastrointestinal tract. Journal of Comparative Neurology, 1997, 386, 396-408.	1.6	8
51	Vesicular monoamine transporter 2 expression in enteric neurons and enterochromaffin-like cells of the rat. Neuroscience Letters, 1996, 217, 77-80.	2.1	30
52	Cellular sites of expression of the neurokinin-1 receptor in the rat gastrointestinal tract. Journal of Comparative Neurology, 1995, 358, 531-540.	1.6	150
53	Peptide immunoreactivities in the ganglionated plexuses and nerve fibers innervating the human gallbladder. Journal of the Autonomic Nervous System, 1995, 51, 37-47.	1.9	37
54	Calcitonin Gene-Related Peptide-Containing Neurons Supplying the Rat Digestive System: Differential Distribution and Expression Pattern. Somatosensory & Motor Research, 1992, 9, 45-59.	0.9	78

CATIA STERNINI

#	Article	IF	CITATIONS
55	Enteric and Visceral Afferent CGRP Neurons Annals of the New York Academy of Sciences, 1992, 657, 170-186.	3.8	88
56	Calcitonin Gene?Related Peptide in Inflammatory Bowel Disease and Experimentally Induced Colitis. Annals of the New York Academy of Sciences, 1992, 657, 319-327.	3.8	52
57	Preparation of a Monoclonal Antibody to Rat ?-CGRP for in Vivo Immunoneutralization of Peptides. Annals of the New York Academy of Sciences, 1992, 657, 525-527.	3.8	3
58	Neuropeptide Y immunoreactivity in the mammalian liver: pattern of innervation and coexistence with tyrosine hydroxylase immunoreactivity. Cell and Tissue Research, 1991, 265, 287-295.	2.9	31
59	Expression and cellular localization of substance P/neurokinin A and neurokinin B mRNAs in the rat retina. Visual Neuroscience, 1989, 3, 527-535.	1.0	46