
Michael R Bailey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7416057/publications.pdf Version: 2024-02-01

MICHAEL P RAILEY

#	Article	IF	CITATIONS
1	Overview of Therapeutic Ultrasound Applications and Safety Considerations. Journal of Ultrasound in Medicine, 2012, 31, 623-634.	1.7	493
2	Physical mechanisms of the therapeutic effect of ultrasound (a review). Acoustical Physics, 2003, 49, 369-388.	1.0	379
3	Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging. Ultrasound in Medicine and Biology, 2001, 27, 33-42.	1.5	370
4	Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach. Journal of the Acoustical Society of America, 2008, 124, 2406-2420.	1,1	258
5	Cavitation clouds created by shock scattering from bubbles during histotripsy. Journal of the Acoustical Society of America, 2011, 130, 1888-1898.	1.1	256
6	Shock Wave Technology and Application: An Update. European Urology, 2011, 59, 784-796.	1.9	251
7	Blood Vessel Deformations on Microsecond Time Scales by Ultrasonic Cavitation. Physical Review Letters, 2011, 106, 034301.	7.8	250
8	Effects of nonlinear propagation, cavitation, and boiling in lesion formation by high intensity focused ultrasound in a gel phantom. Journal of the Acoustical Society of America, 2006, 119, 1834-1848.	1.1	246
9	An overview of kidney stone imaging techniques. Nature Reviews Urology, 2016, 13, 654-662.	3.8	228
10	Cavitation Bubble Cluster Activity in the Breakage of Kidney Stones by Lithotripter Shockwaves. Journal of Endourology, 2003, 17, 435-446.	2.1	196
11	Shock-Induced Heating and Millisecond Boiling in Gels and Tissue Due to High Intensity Focused Ultrasound. Ultrasound in Medicine and Biology, 2010, 36, 250-267.	1.5	181
12	Controlled tissue emulsification produced by high intensity focused ultrasound shock waves and millisecond boiling. Journal of the Acoustical Society of America, 2011, 130, 3498-3510.	1.1	154
13	Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid. Journal of the Acoustical Society of America, 2013, 133, 661-676.	1.1	152
14	Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy. Journal of the Acoustical Society of America, 2002, 112, 1183-1195.	1.1	141
15	A mechanistic analysis of stone fracture in lithotripsy. Journal of the Acoustical Society of America, 2007, 121, 1190-1202.	1.1	140
16	Use of overpressure to assess the role of bubbles in focused ultrasound lesion shape in vitro. Ultrasound in Medicine and Biology, 2001, 27, 695-708.	1.5	128
17	Characterization of a multi-element clinical HIFU system using acoustic holography and nonlinear modeling. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 1683-1698.	3.0	114
18	Hemostasis of punctured blood vessels using high-intensity focused ultrasound. Ultrasound in Medicine and Biology, 1998, 24, 903-910.	1.5	106

#	Article	IF	CITATIONS
19	Kidney Damage and Renal Functional Changes are Minimized by Waveform Control that Suppresses Cavitation in Shock Wave Lithotripsy. Journal of Urology, 2002, 168, 1556-1562.	0.4	106
20	Fragmentation of Urinary Calculi InÂVitro by Burst Wave Lithotripsy. Journal of Urology, 2015, 193, 338-344.	0.4	97
21	Effect of high-intensity focused ultrasound on whole blood with and without microbubble contrast agent. Ultrasound in Medicine and Biology, 1999, 25, 991-998.	1.5	96
22	Ultrasonic atomization of tissue and its role in tissue fractionation by high intensity focused ultrasound. Physics in Medicine and Biology, 2012, 57, 8061-8078.	3.0	95
23	A dual passive cavitation detector for localized detection of lithotripsy-induced cavitationin vitro. Journal of the Acoustical Society of America, 2000, 107, 1745-1758.	1.1	91
24	Histological and Biochemical Analysis of Mechanical and Thermal Bioeffects in Boiling Histotripsy Lesions Induced by High Intensity Focused Ultrasound. Ultrasound in Medicine and Biology, 2013, 39, 424-438.	1.5	91
25	Ultrasound-guided tissue fractionation by high intensity focused ultrasound in an in vivo porcine liver model. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8161-8166.	7.1	89
26	Use of a dual-pulse lithotripter to generate a localized and intensified cavitation field. Journal of the Acoustical Society of America, 2001, 110, 1685-1695.	1.1	87
27	Observations of Translation and Jetting of Ultrasound-Activated Microbubbles in Mesenteric Microvessels. Ultrasound in Medicine and Biology, 2011, 37, 2139-2148.	1.5	86
28	Disintegration of Tissue Using High Intensity Focused Ultrasound: Two Approaches That Utilize Shock Waves. Acoustics Today, 2012, 8, 24.	1.0	86
29	Cavitation detection during shock-wave lithotripsy. Ultrasound in Medicine and Biology, 2005, 31, 1245-1256.	1.5	84
30	Design and characterization of a research electrohydraulic lithotripter patterned after the Dornier HM3. Review of Scientific Instruments, 2000, 71, 2514-2525.	1.3	83
31	Blood vessel rupture by cavitation. Urological Research, 2010, 38, 321-326.	1.5	83
32	Ultracal-30 gypsum artificial stones for research on the mechanisms of stone breakage in shock wave lithotripsy. Urological Research, 2005, 33, 429-434.	1.5	82
33	The Risk of Exposure to Diagnostic Ultrasound in Postnatal Subjects. Journal of Ultrasound in Medicine, 2008, 27, 565-592.	1.7	79
34	Noninvasive acoustic manipulation of objects in a living body. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16848-16855.	7.1	77
35	Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. II. Cavitation fields. Journal of the Acoustical Society of America, 1999, 106, 1149-1160.	1.1	73
36	Cavitation selectively reduces the negative-pressure phase of lithotripter shock pulses. Acoustics Research Letters Online: ARLO, 2005, 6, 280-286.	0.7	73

#	Article	IF	CITATIONS
37	Magnetic resonance imaging of boiling induced by high intensity focused ultrasound. Journal of the Acoustical Society of America, 2009, 125, 2420-2431.	1.1	71
38	Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. I. Acoustic fields. Journal of the Acoustical Society of America, 1998, 104, 2517-2524.	1.1	69
39	Design of HIFU Transducers for Generating Specified Nonlinear Ultrasound Fields. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 374-390.	3.0	67
40	Pretreatment with lowâ€energy shock waves induces renal vasoconstriction during standard shock wave lithotripsy (SWL): a treatment protocol known to reduce SWLâ€induced renal injury. BJU International, 2009, 103, 1270-1274.	2.5	64
41	Focusing of high power ultrasound beams and limiting values of shock wave parameters. Acoustical Physics, 2009, 55, 463-473.	1.0	64
42	Ultrasonic atomization of liquids in drop-chain acoustic fountains. Journal of Fluid Mechanics, 2015, 766, 129-146.	3.4	61
43	A Prototype Therapy System for Transcutaneous Application of Boiling Histotripsy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 1542-1557.	3.0	55
44	First in Human Clinical Trial of Ultrasonic Propulsion of Kidney Stones. Journal of Urology, 2016, 195, 956-964.	0.4	54
45	B-mode Ultrasound Versus Color Doppler Twinkling Artifact in Detecting Kidney Stones. Journal of Endourology, 2013, 27, 149-153.	2.1	51
46	A derating method for therapeutic applications of high intensity focused ultrasound. Acoustical Physics, 2010, 56, 354-363.	1.0	50
47	Conditionally Increased Acoustic Pressures in Nonfetal Diagnostic Ultrasound Examinations Without Contrast Agents: A Preliminary Assessment. Journal of Ultrasound in Medicine, 2015, 34, 1-41.	1.7	48
48	Evidence for Trapped Surface Bubbles as the Cause for the Twinkling Artifact in Ultrasound Imaging. Ultrasound in Medicine and Biology, 2013, 39, 1026-1038.	1.5	46
49	Dual-pulse lithotripter accelerates stone fragmentation and reduces cell lysis in vitro. Ultrasound in Medicine and Biology, 2003, 29, 1045-1052.	1.5	45
50	Novel ultrasound method to reposition kidney stones. Urological Research, 2010, 38, 491-495.	1.5	44
51	Quantitative Assessment of Shockwave Lithotripsy Accuracy and the Effect of Respiratory Motion. Journal of Endourology, 2012, 26, 1070-1074.	2.1	43
52	Focused Ultrasound to Expel Calculi From the Kidney. Journal of Urology, 2012, 187, 739-743.	0.4	43
53	Focused Ultrasound to Expel Calculi from the Kidney: Safety and Efficacy of a Clinical Prototype Device. Journal of Urology, 2013, 190, 1090-1095.	0.4	43
54	Use of the Acoustic Shadow Width to Determine Kidney Stone Size with Ultrasound. Journal of Urology, 2016, 195, 171-177.	0.4	43

#	Article	IF	CITATIONS
55	Dependence of Boiling Histotripsy Treatment Efficiency on HIFU Frequency and Focal Pressure Levels. Ultrasound in Medicine and Biology, 2017, 43, 1975-1985.	1.5	42
56	Tools to Improve the Accuracy of Kidney Stone Sizing with Ultrasound. Journal of Endourology, 2015, 29, 147-152.	2.1	36
57	A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound. Journal of the Acoustical Society of America, 2011, 130, 3511-3530.	1.1	35
58	Effect of macroscopic air bubbles on cell lysis by shock wave lithotripsy in vitro. Ultrasound in Medicine and Biology, 1999, 25, 473-479.	1.5	33
59	Prefocal Alignment Improves Stone Comminution in Shockwave Lithotripsy. Journal of Endourology, 2002, 16, 709-715.	2.1	32
60	Pilot in vivo studies on transcutaneous boiling histotripsy in porcine liver and kidney. Scientific Reports, 2019, 9, 20176.	3.3	32
61	Preclinical Safety and Effectiveness Studies of Ultrasonic Propulsion of Kidney Stones. Urology, 2014, 84, 484-489.	1.0	31
62	Focused Ultrasonic Propulsion of Kidney Stones: Review and Update of Preclinical Technology. Journal of Endourology, 2013, 27, 1183-1186.	2.1	30
63	Comparison of Tissue Injury from Focused Ultrasonic Propulsion of Kidney Stones Versus Extracorporeal Shock Wave Lithotripsy. Journal of Urology, 2014, 191, 235-241.	0.4	29
64	Evaluation of Renal Stone Comminution and Injury by Burst Wave Lithotripsy in a Pig Model. Journal of Endourology, 2019, 33, 787-792.	2.1	29
65	In vitro sonoluminescence and sonochemistry studies with an electrohydraulic shock-wave lithotripter. Ultrasound in Medicine and Biology, 2002, 28, 1199-1207.	1.5	28
66	Tissue ablation using high-intensity focused ultrasound in the fetal sheep model: potential for fetal treatment. American Journal of Obstetrics and Gynecology, 2003, 189, 702-705.	1.3	28
67	Detection and Evaluation of Renal Injury in Burst Wave Lithotripsy Using Ultrasound and Magnetic Resonance Imaging. Journal of Endourology, 2017, 31, 786-792.	2.1	28
68	The relation between cavitation and platelet aggregation during exposure to high-intensity focused ultrasound. Ultrasound in Medicine and Biology, 2004, 30, 261-269.	1.5	25
69	Retrospective comparison of measured stone size and posterior acoustic shadow width in clinical ultrasound images. World Journal of Urology, 2018, 36, 727-732.	2.2	24
70	A method to synchronize high-intensity, focused ultrasound with an arbitrary ultrasound imager. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 645-650.	3.0	23
71	Targeted microbubbles: a novel application for the treatment of kidney stones. BJU International, 2015, 116, 9-16.	2.5	23
72	Ultrasonic propulsion of kidney stones. Current Opinion in Urology, 2016, 26, 264-270.	1.8	23

#	Article	IF	CITATIONS
73	Design of HIFU Transducers to Generate Specific Nonlinear Ultrasound Fields. Physics Procedia, 2016, 87, 132-138.	1.2	23
74	Field Characterization and Compensation of Vibrational Nonuniformity for a 256-Element Focused Ultrasound Phased Array. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 1618-1630.	3.0	23
75	Stone-Mode Ultrasound for Determining Renal Stone Size. Journal of Endourology, 2016, 30, 958-962.	2.1	21
76	Energy shielding by cavitation bubble clouds in burst wave lithotripsy. Journal of the Acoustical Society of America, 2018, 144, 2952-2961.	1.1	21
77	First In-Human Burst Wave Lithotripsy for Kidney Stone Comminution: Initial Two Case Studies. Journal of Endourology, 2021, 35, 506-511.	2.1	21
78	Evaluation of a shock wave induced cavitation activity both <i>in vitro</i> and <i>in vivo</i> . Physics in Medicine and Biology, 2007, 52, 5933-5944.	3.0	20
79	Combined Burst Wave Lithotripsy and Ultrasonic Propulsion for Improved Urinary Stone Fragmentation. Journal of Endourology, 2018, 32, 344-349.	2.1	19
80	Monitoring bubble growth in supersaturated blood and tissue ex vivo and the relevance to marine mammal bioeffects. Acoustics Research Letters Online: ARLO, 2005, 6, 214-220.	0.7	18
81	Observations of the collapses and rebounds of millimeter-sized lithotripsy bubbles. Journal of the Acoustical Society of America, 2011, 130, 3531-3540.	1.1	18
82	Progress in Lithotripsy Research. Acoustics Today, 2006, 2, 18.	1.0	17
83	Quantification of Acoustic Radiation Forces on Solid Objects in Fluid. Physical Review Applied, 2019, 12, .	3.8	17
84	Fragmentation of Stones by Burst Wave Lithotripsy in the First 19 Humans. Journal of Urology, 2022, 207, 1067-1076.	0.4	17
85	The use of resonant scattering to identify stone fracture in shock wave lithotripsy. Journal of the Acoustical Society of America, 2007, 121, EL41-EL47.	1.1	16
86	Investigation into the Mechanisms of Tissue Atomization by High-Intensity Focused Ultrasound. Ultrasound in Medicine and Biology, 2015, 41, 1372-1385.	1.5	16
87	Modeling and experimental analysis of acoustic cavitation bubbles for Burst Wave Lithotripsy. Journal of Physics: Conference Series, 2015, 656, 012027.	0.4	15
88	Kidney Damage and Renal Functional Changes are Minimized by Waveform Control that Suppresses Cavitation in Shock Wave Lithotripsy. Journal of Urology, 2002, , 1556-1562.	0.4	15
89	The role of compressional pressure in the formation of dense bubble clouds in histotripsy. , 2009, , .		14
90	Improved detection of kidney stones using an optimized Doppler imaging sequence. , 2014, 2014, 452-455.		14

#	Article	IF	CITATIONS
91	Focused ultrasound to displace renal calculi: threshold for tissue injury. Journal of Therapeutic Ultrasound, 2014, 2, 5.	2.2	14
92	Quantification of Renal Stone Contrast with Ultrasound in Human Subjects. Journal of Endourology, 2017, 31, 1123-1130.	2.1	14
93	Innovations in Ultrasound Technology in the Management of Kidney Stones. Urologic Clinics of North America, 2019, 46, 273-285.	1.8	14
94	Use of a bovine eye lens for observation of HIFU-induced lesions in real-time. Ultrasound in Medicine and Biology, 2006, 32, 1731-1741.	1.5	13
95	Safety and Effectiveness of a Longer Focal Beam and Burst Duration in Ultrasonic Propulsion for Repositioning Urinary Stones and Fragments. Journal of Endourology, 2017, 31, 793-799.	2.1	13
96	An investigation of elastic waves producing stone fracture in burst wave lithotripsy. Journal of the Acoustical Society of America, 2020, 147, 1607-1622.	1.1	13
97	Edge wave on axis behind an aperture or disk having a ragged edge. Journal of the Acoustical Society of America, 2000, 107, 103-111.	1.1	12
98	Acoustic Shielding by Cavitation Bubbles in Shock Wave Lithotripsy (SWL). AIP Conference Proceedings, 2006, , .	0.4	12
99	Developing Complete Ultrasonic Management of Kidney Stones for Spaceflight. Journal of Space Safety Engineering, 2016, 3, 50-57.	0.9	12
100	Shock formation and nonlinear saturation effects in the ultrasound field of a diagnostic curvilinear probe. Journal of the Acoustical Society of America, 2017, 141, 2327-2337.	1.1	12
101	Quantitative Assessment of Effectiveness of Ultrasonic Propulsion of Kidney Stones. Journal of Endourology, 2019, 33, 850-857.	2.1	12
102	Burst wave lithotripsy and acoustic manipulation of stones. Current Opinion in Urology, 2020, 30, 149-156.	1.8	12
103	Design, fabrication, and characterization of broad beam transducers for fragmenting large renal calculi with burst wave lithotripsy. Journal of the Acoustical Society of America, 2020, 148, 44-50.	1.1	11
104	<i>In Vitro</i> Evaluation of Urinary Stone Comminution with a Clinical Burst Wave Lithotripsy System. Journal of Endourology, 2020, 34, 1167-1173.	2.1	11
105	Title is missing!. Cytotechnology, 1998, 19, 303-310.	0.7	10
106	A suppressor to prevent direct wave-induced cavitation in shock wave therapy devices. Journal of the Acoustical Society of America, 2005, 118, 178-185.	1.1	10
107	Ultrasonic measurement of condensate film thickness. Journal of the Acoustical Society of America, 2008, 124, EL196-EL202.	1.1	9
108	Content and Face Validation of a Curriculum for Ultrasonic Propulsion of Calculi in a Human Renal Model. Journal of Endourology, 2014, 28, 459-463.	2.1	9

#	Article	IF	CITATIONS
109	Effect of Stone Size and Composition on Ultrasonic Propulsion Ex Vivo. Urology, 2018, 111, 225-229.	1.0	9
110	Recalcitrant Supraventricular Tachycardia: Occult Albuterol Toxicity Due to a Factitious Disorder. Journal of Emergency Medicine, 2015, 49, 436-438.	0.7	8
111	Effect of Carbon Dioxide on the Twinkling Artifact in Ultrasound Imaging of Kidney Stones: A Pilot Study. Ultrasound in Medicine and Biology, 2017, 43, 877-883.	1.5	8
112	Update on clinical trials of kidney stone repositioning and preclinical results of stone breaking with one system. Proceedings of Meetings on Acoustics, 2018, 35, .	0.3	8
113	Beamwidth measurement of individual lithotripter shock waves. Journal of the Acoustical Society of America, 2009, 125, 1240-1245.	1.1	7
114	Tissue Erosion Using Shock Wave Heating and Millisecond Boiling in HIFU Fields. , 2010, , .		7
115	The Impact of Dust and Confinement on Fragmentation of Kidney Stones by Shockwave Lithotripsy in Tissue Phantoms. Journal of Endourology, 2019, 33, 400-406.	2.1	7
116	Ureteroscopic Ultrasound Technology to Size Kidney Stone Fragments: Proof of Principle Using a Miniaturized Probe in a Porcine Model. Journal of Endourology, 2010, 24, 939-942.	2.1	6
117	Renal Vasoconstriction Occurs Early During Shockwave Lithotripsy in Humans. Journal of Endourology, 2015, 29, 1392-1395.	2.1	6
118	Measurement of Posterior Acoustic Stone Shadow on Ultrasound Is a Learnable Skill for Inexperienced Users to Improve Accuracy of Stone Sizing. Journal of Endourology, 2018, 32, 1033-1038.	2.1	6
119	Modeling of photoelastic imaging of mechanical stresses in transparent solids mimicking kidney stones. Journal of the Acoustical Society of America, 2020, 147, 3819-3829.	1.1	6
120	Focused Ultrasound: Concept for Automated Transcutaneous Control of Hemorrhage in Austere Settings. Aviation, Space, and Environmental Medicine, 2009, 80, 391-394.	0.5	5
121	Bubbles trapped on the surface of kidney stones as a cause of the twinkling artifact in ultrasound imaging. Proceedings of Meetings on Acoustics, 2013, 19, .	0.3	5
122	Pulsed Focused Ultrasound Treatment of Muscle Mitigates Paralysis-Induced Bone Loss in the Adjacent Bone: A Study in a Mouse Model. Ultrasound in Medicine and Biology, 2014, 40, 2113-2124.	1.5	5
123	Characterizing the Acoustic Output of an Ultrasonic Propulsion Device for Urinary Stones. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 1818-1827.	3.0	5
124	Noninvasive Ureterocele Puncture Using Pulsed Focused Ultrasound: An <i>In Vitro</i> Study. Journal of Endourology, 2014, 28, 342-346.	2.1	4
125	Impact of stone type on cavitation in burst wave lithotripsy. Proceedings of Meetings on Acoustics, 2018, 35, .	0.3	4
126	Evidence of Microbubbles on Kidney Stones in Humans. Ultrasound in Medicine and Biology, 2020, 46, 1802-1807.	1.5	4

#	Article	IF	CITATIONS
127	Maximizing mechanical stress in small urinary stones during burst wave lithotripsy. Journal of the Acoustical Society of America, 2021, 150, 4203-4212.	1.1	4
128	Bubbles trapped at the coupling surface of the treatment head significantly reduce acoustic energy delivered in shock wave lithotripsy. AIP Conference Proceedings, 2006, , .	0.4	3
129	Interactions of Cavitation Bubbles Observed by High-Speed Imaging in Shock Wave Lithotripsy. AIP Conference Proceedings, 2006, , .	0.4	3
130	Ultrasonic propulsion of kidney stones: Preliminary results of human feasibility study. , 2014, 2014, 511-514.		3
131	Pearlâ€unjammed: the Seattle stone maneuver for ureteropelvic junction urolithiasis. Journal of the American College of Emergency Physicians Open, 2020, 1, 252-256.	0.7	3
132	Recent Advances in the Science of Burst Wave Lithotripsy and Ultrasonic Propulsion. BME Frontiers, 2022, 2022, .	4.5	3
133	Improving Burst Wave Lithotripsy Effectiveness for Small Stones and Fragments by Increasing Frequency: Theoretical Modeling and <i>Ex Vivo</i> Study. Journal of Endourology, 2022, 36, 996-1003.	2.1	3
134	Detecting Fragmentation of Kidney Stones in Lithotripsy by Means of Shock Wave Scattering. AIP Conference Proceedings, 2006, , .	0.4	2
135	Tissue atomization by high intensity focused ultrasound. , 2012, 2012, 1003-1006.		2
136	Novel High-Intensity Focused Ultrasound Clamp—Potential Adjunct for Laparoscopic Partial Nephrectomy. Journal of Endourology, 2012, 26, 1494-1499.	2.1	2
137	Acoustic radiation force to reposition kidney stones. Proceedings of Meetings on Acoustics, 2013, 19, .	0.3	2
138	Tailoring acoustics and devices for gene therapy. Physics of Life Reviews, 2018, 26-27, 47-48.	2.8	2
139	Some Work on the Diagnosis and Management of Kidney Stones with Ultrasound. Acoustics Today, 2017, 13, 52-59.	1.0	2
140	Measurement and Modeling of Acoustic Fields in a Gel Phantom at High Intensities. AIP Conference Proceedings, 2006, , .	0.4	1
141	Role of Shear and Longitudinal Waves in Stone Comminution by Lithotripter Shock Waves. AIP Conference Proceedings, 2006, , .	0.4	1
142	A Prototype Ultrasound Instrument To Size Stone Fragments During Ureteroscopy. AIP Conference Proceedings, 2008, , .	0.4	1
143	Ultrasound intensity to propel stones from the kidney is below the threshold for renal injury. Proceedings of Meetings on Acoustics, 2013, 19, .	0.3	1
144	Design of a transducer for fragmenting large kidney stones using burst wave lithotripsy. Proceedings of Meetings on Acoustics, 2018, 35, .	0.3	1

#	Article	IF	CITATIONS
145	Summary of "Biomedical Acoustics and Physical Acoustics: Shock Waves and Ultrasound for Calculus Fragmentation― Proceedings of Meetings on Acoustics, 2018, 35, .	0.3	1
146	Focused Ultrasonic Propulsion of Kidney Stones. Videourology (New Rochelle, N Y), 2013, 27, .	0.1	1
147	New Devices and Old Pitfalls in Shock Wave Therapy. AIP Conference Proceedings, 2006, , .	0.4	Ο
148	Modeling of Bubble Oscillations Induced by a Lithotripter Pulse. AIP Conference Proceedings, 2006, , .	0.4	0
149	Advantage of a Broad Focal Zone in SWL: Synergism Between Squeezing and Shear. AIP Conference Proceedings, 2007, , .	0.4	Ο
150	Simulated and experimental analysis of PVDF membrane hydrophone low-frequency response for accurate measurements of lithotripsy shockwaves. , 2008, , .		0
151	Shockwave lithotripsy with renoprotective pause is associated with renovascular vasoconstriction in humans. , 2014, 2014, 1013-1016.		Ο
152	Simple circumcision device: proof of concept for a single-visit, adjustable device to facilitate safe adult male circumcision. Fertility and Sterility, 2014, 101, 1266-1270.	1.0	0
153	Re: Leapman etÂal.: Up and Away: Five Decades of Urologic Investigation in Microgravity (Urology) Tj ETQq1 1 0.	.784314 rj 1.0	gBT /Overlock
154	The effect of shear waves in an elastic sphere on the radiation force from a quasi-Gaussian beam. Proceedings of Meetings on Acoustics, 2017, 32, .	0.3	0
155	Notice of Removal: Design and characterization of a 2-dimensional focused 1.5-MHz ultrasound array with a compact spiral arrangement of 256 circular elements. , 2017, , .		Ο
156	Notice of Removal: Imaging in situ human kidney stones with the color Doppler ultrasound twinkling artifact. , 2017, , .		0
157	Preclinical safety and effectiveness of a longer beam and burst duration for ultrasonic repositioning of urinary stones. , 2017, , .		0
158	Cavitation bubble cluster activity in the breakage of stones by shock wave lithotripsy. Journal of the Acoustical Society of America, 2002, 111, 2461.	1.1	0
159	Ultrasonic atomization: A mechanism of tissue fractionation. Journal of the Acoustical Society of America, 2013, 133, 3316-3316.	1.1	0