Hideyuki Ihara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7415577/publications.pdf

Version: 2024-02-01

414414 471509 1,145 38 17 32 citations h-index g-index papers 39 39 39 1329 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	True significance of N-acetylglucosaminyltransferases GnT-III, V and $\hat{l}\pm 1,6$ fucosyltransferase in epithelial-mesenchymal transition and cancer. Molecular Aspects of Medicine, 2021, 79, 100905.	6.4	27
2	The Roles of the N-terminal \hat{l} ±-helical and C-terminal Src Homology 3 Domains in the Enzymatic Functions of FUT8. Trends in Glycoscience and Glycotechnology, 2021, 33, J69-J73.	0.1	0
3	The Roles of the N-terminal α-helical and C-terminal Src Homology 3 Domains in the Enzymatic Functions of FUT8. Trends in Glycoscience and Glycotechnology, 2021, 33, E69-E73.	0.1	O
4	Involvement of the \hat{l}_{\pm} -helical and Src homology 3 domains in the molecular assembly and enzymatic activity of human $\hat{l}_{\pm}1$,6-fucosyltransferase, FUT8. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129596.	2.4	11
5	Characterization of MiFUT11 from Mangifera indica L.: A functional core $\hat{l}\pm 1,3$ -fucosyltransferase potentially involved in the biosynthesis of immunogenic carbohydrates in mango fruit. Phytochemistry, 2019, 165, 112050.	2.9	1
6	Molecular cloning and functional expression of Lewis type $\hat{l}\pm 1,3/\hat{l}\pm 1,4$ -fucosyltransferase cDNAs from Mangifera indica L Phytochemistry, 2017, 144, 98-105.	2.9	4
7	Control of Glycans by Enzyme Competitions. , 2015, , 1163-1171.		3
8	Fucosyltransferase 8. GDP-Fucose N-Glycan Core α6-Fucosyltransferase (FUT8)., 2014,, 581-596.		5
9	Cloning, expression and characterization of Bombyx mori $\hat{l}\pm 1$,6-fucosyltransferase. Biochemical and Biophysical Research Communications, 2014, 450, 953-960.	2.1	10
10	$1\hat{l}\pm,25$ -Dihydroxyvitamin D3 enhances \hat{l}^3 -glutamyl transpeptidase activity in LLC-PK1 porcine kidney epithelial cells. Molecular Medicine Reports, 2014, 10, 2111-2115.	2.4	1
11	Mannosyl (Beta-1,4-)-Glycoprotein Beta-1,4-N-Acetylglucosaminyltransferase (MGAT3); Î ² 1,4-N-Acetylglucosaminyltransferase III (GnT-III, GlcNAcT-III). , 2014, , 209-222.		5
12	Control of Glycans by Enzyme Competitions. , 2014, , 1-8.		0
13	An Assay for $\hat{l}\pm 1,6$ -Fucosyltransferase (FUT8) Activity Based on the HPLC Separation of a Reaction Product with Fluorescence Detection. Methods in Molecular Biology, 2013, 1022, 335-348.	0.9	7
14	Difucosylation of chitooligosaccharides by eukaryote and prokaryote α1,6-fucosyltransferases. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4482-4490.	2.4	10
15	MD-2-dependent human Toll-like receptor 4 monoclonal antibodies detect extracellular association of Toll-like receptor 4 with extrinsic soluble MD-2 on the cell surface. Biochemical and Biophysical Research Communications, 2013, 440, 31-36.	2.1	5
16	Reduced Surface Expression of TLR4 by a V254I Point Mutation Accounts for the Low Lipopolysaccharide Responder Phenotype of BALB/c B Cells. Journal of Immunology, 2013, 190, 195-204.	0.8	25
17	Multiple potential regulatory sites of TLR4 activation induced by LPS as revealed by novel inhibitory human TLR4 mAbs. International Immunology, 2012, 24, 495-506.	4.0	18
18	Measurement of peroxiredoxin-4 serum levels in rat tissue and its use as a potential marker for hepatic disease. Molecular Medicine Reports, 2012, 6, 379-384.	2.4	18

#	Article	IF	Citations
19	Different consequences of reactions with hydrogen peroxide and t-butyl hydroperoxide in the hyperoxidative inactivation of rat peroxiredoxin-4. Journal of Biochemistry, 2011, 149, 443-453.	1.7	11
20	Clinicopathologic Application of Lectin Histochemistry. Applied Immunohistochemistry and Molecular Morphology, 2010, 18, 518-525.	1.2	7
21	N-Glycosylation engineering of lepidopteran insect cells by the introduction of the Â1,4-N-acetylglucosaminyltransferase III gene. Glycobiology, 2010, 20, 1147-1159.	2.5	25
22	Fucosylation of chitooligosaccharides by human $\hat{A}1$,6-fucosyltransferase requires a nonreducing terminal chitotriose unit as a minimal structure. Glycobiology, 2010, 20, 1021-1033.	2.5	22
23	Expression of N-terminally truncated forms of rat peroxiredoxin-4 in insect cells. Protein Expression and Purification, 2010, 72, 1-7.	1.3	12
24	Bidirectional N-acetylglucosamine transfer mediated by Â-1,4-N-acetylglucosaminyltransferase III. Glycobiology, 2008, 19, 368-374.	2.5	15
25	Crystal structure of mammalian α1,6-fucosyltransferase, FUT8. Glycobiology, 2007, 17, 455-466.	2.5	114
26	Core Fucosylation Regulates Epidermal Growth Factor Receptor-mediated Intracellular Signaling. Journal of Biological Chemistry, 2006, 281, 2572-2577.	3.4	281
27	A specific detection of GlcNAc \hat{l}^2 1-6Man $\hat{l}\pm 1$ branches in N-linked glycoproteins based on the specificity of N-acetylglucosaminyltransferase VI. Glycobiology, 2006, 16, 431-439.	2.5	6
28	Reaction mechanism and substrate specificity for nucleotide sugar of mammalian $\hat{1}\pm 1,6$ -fucosyltransferase $\hat{a}\in \hat{a}$ a large-scale preparation and characterization of recombinant human FUT8. Glycobiology, 2006, 16, 333-342.	2.5	67
29	\hat{l}^2 1,4-N-Acetylglucosaminyltransferase III potentiates \hat{l}^2 1 integrin-mediated neuritogenesis induced by serum deprivation in Neuro2a cells. Glycobiology, 2006, 16, 564-571.	2.5	30
30	Cell-Cell Interaction-dependent Regulation of N-Acetylglucosaminyltransferase III and the Bisected N-Glycans in GE11 Epithelial Cells. Journal of Biological Chemistry, 2006, 281, 13038-13046.	3.4	57
31	Caveolin-1 Regulates the Functional Localization of N-Acetylglucosaminyltransferase III within the Golgi Apparatus. Journal of Biological Chemistry, 2003, 278, 25295-25301.	3.4	32
32	Addition of $\hat{A}1$ -6 GlcNAc branching to the oligosaccharide attached to Asn 772 in the serine protease domain of matriptase plays a pivotal role in its stability and resistance against trypsin. Glycobiology, 2003, 14, 139-146.	2.5	52
33	$\hat{A}1,4$ -N-Acetylglucosaminyltransferase III down-regulates neurite outgrowth induced by costimulation of epidermal growth factor and integrins through the Ras/ERK signaling pathway in PC12 cells. Glycobiology, 2003, 14, 177-186.	2.5	52
34	A catalytically inactive \hat{l}^2 1,4-N -acetylglucosaminyltransferase III (GnT-III) behaves as a dominant negative GnT-III inhibitor. FEBS Journal, 2002, 269, 193-201.	0.2	26
35	An enzymatic method of analysis for GDP-l-fucose in biological samples, involving high-performance liquid chromatography. Analytical Biochemistry, 2002, 310, 100-106.	2.4	10
36	Down-regulation of the α-Gal Epitope Expression inN-Glycans of Swine Endothelial Cells by Transfection with theN-Acetylglucosaminyltransferase III Gene. Journal of Biological Chemistry, 2001, 276, 32867-32874.	3.4	41

HIDEYUKI İHARA

#	Article	IF	CITATIONS
37	The Critical Role of the Stem Region as a Functional Domain Responsible for the Oligomerization and Golgi Localization of N-Acetylglucosaminyltransferase V. Journal of Biological Chemistry, 2001, 276, 759-765.	3.4	47
38	The Addition of Bisecting N-Acetylglucosamine Residues to E-cadherin Down-regulates the Tyrosine Phosphorylation of Î ² -Catenin. Journal of Biological Chemistry, 2001, 276, 475-480.	3.4	88