Michele Muccini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7415187/publications.pdf

Version: 2024-02-01

217 papers

8,877 citations

47006 47 h-index 49909 87 g-index

227 all docs

227 docs citations

times ranked

227

9242 citing authors

#	Article	IF	Citations
1	A bright future for organic field-effect transistors. Nature Materials, 2006, 5, 605-613.	27.5	861
2	Correlation between Molecular Packing and Optical Properties in Different Crystalline Polymorphs and Amorphous Thin Films ofmer-Tris(8-hydroxyquinoline)aluminum(III). Journal of the American Chemical Society, 2000, 122, 5147-5157.	13.7	565
3	Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes. Nature Materials, 2010, 9, 496-503.	27.5	535
4	Ambipolar light-emitting organic field-effect transistor. Applied Physics Letters, 2004, 85, 1613-1615.	3. 3	302
5	High-Mobility Ambipolar Transport in Organic Light-Emitting Transistors. Advanced Materials, 2006, 18, 1416-1420.	21.0	220
6	Supramolecular organization in ultra-thin films of \hat{l}_{\pm} -sexithiophene on silicon dioxide. Nature Materials, 2004, 4, 81-85.	27.5	205
7	Luminescent Ethynylâ^Pyrene Liquid Crystals and Gels for Optoelectronic Devices. Journal of the American Chemical Society, 2009, 131, 18177-18185.	13.7	198
8	Charge Transfer Excitons in Bulk Heterojunctions of a Polyfluorene Copolymer and a Fullerene Derivative. Advanced Functional Materials, 2007, 17, 2111-2116.	14.9	197
9	The Role of Substituents on Functionalized 1,10-Phenanthroline in Controlling the Emission Properties of Cationic Iridium(III) Complexes of Interest for Electroluminescent Devices. Inorganic Chemistry, 2007, 46, 8533-8547.	4.0	164
10	Semiconducting and Electroluminescent Nanowires Selfâ€Assembled from Organoplatinum(II) Complexes. Angewandte Chemie - International Edition, 2008, 47, 9895-9899.	13.8	160
11	A transparent organic transistor structure for bidirectional stimulation and recording of primaryÂneurons. Nature Materials, 2013, 12, 672-680.	27.5	145
12	Integration of silk protein in organic and light-emitting transistors. Organic Electronics, 2011, 12, 1146-1151.	2.6	137
13	Tuning Optoelectronic Properties of Ambipolar Organic Light- Emitting Transistors Using a Bulk-Heterojunction Approach. Advanced Functional Materials, 2006, 16, 41-47.	14.9	131
14	Morphology and Field-Effect-Transistor Mobility in Tetracene Thin Films. Advanced Functional Materials, 2005, 15, 375-380.	14.9	111
15	Interchain interaction in a prototypical conjugated oligomer from polarized absorption at 4.2 K: α-sexithienyl single crystal. Journal of Chemical Physics, 1998, 109, 10513-10520.	3.0	104
16	Tetracene-based organic light-emitting transistors: optoelectronic properties and electron injection mechanism. Synthetic Metals, 2004, 146, 329-334.	3.9	104
17	J-Aggregation in α-Sexithiophene Submonolayer Films on Silicon Dioxide. Journal of the American Chemical Society, 2006, 128, 4277-4281.	13.7	99
18	Organic Light-Emitting Transistors Based on Solution-Cast and Vacuum-Sublimed Films of a Rigid Core Thiophene Oligomer. Advanced Materials, 2006, 18, 169-174.	21.0	97

#	Article	IF	CITATIONS
19	Polarized fluorescence in α-sexithienyl single crystal at 4.2 K. Journal of Chemical Physics, 1998, 108, 7327-7333.	3.0	90
20	Blue Luminescence of Facial Tris(quinolin-8-olato)aluminum(III) in Solution, Crystals, and Thin Films. Advanced Materials, 2004, 16, 861-864.	21.0	87
21	Nanocomposite field effect transistors based on zinc oxide/polymer blends. Applied Physics Letters, 2007, 90, 223509.	3.3	87
22	Tetracene light-emitting transistors on flexible plastic substrates. Applied Physics Letters, 2005, 86, 141106.	3.3	85
23	Construction of a Bioluminescent Reporter Strain To Detect Polychlorinated Biphenyls. Applied and Environmental Microbiology, 1998, 64, 5023-5026.	3.1	84
24	Electron holography in the study of the electrostatic fields: the case of charged microtips. Ultramicroscopy, 1992, 45, 77-83.	1.9	80
25	Highâ€Performance and Stable Perovskite Solar Cells Based on Dopantâ€Free Arylamineâ€Substituted Copper(II) Phthalocyanine Holeâ€Transporting Materials. Advanced Energy Materials, 2019, 9, 1901019.	19.5	80
26	Low-threshold blue lasing from silk fibroin thin films. Applied Physics Letters, 2012, 101, 091110.	3.3	77
27	The photonic perspective of organic lightâ€emitting transistors. Laser and Photonics Reviews, 2012, 6, 258-275.	8.7	77
28	Enhanced Ultraviolet Stability of Air-Processed Polymer Solar Cells by Al Doping of the ZnO Interlayer. ACS Applied Materials & Samp; Interfaces, 2016, 8, 1635-1643.	8.0	74
29	Perfluoroalkyl-Functionalized Thiazole–Thiophene Oligomers as N-Channel Semiconductors in Organic Field-Effect and Light-Emitting Transistors. Chemistry of Materials, 2014, 26, 6542-6556.	6.7	73
30	Conjugated polymers based on benzodithiophene and fluorinated quinoxaline for bulk heterojunction solar cells: thiophene versus thieno[3,2-b]thiophene as π-conjugated spacers. Polymer Chemistry, 2014, 5, 2083.	3.9	68
31	Synthesis, characterization, and transistor response of tetrathia-[7]-helicene precursors and derivatives. Organic Electronics, 2009, 10, 1511-1520.	2.6	66
32	Light-emitting ambipolar organic heterostructure field-effect transistor. Synthetic Metals, 2004, 146, 237-241.	3.9	65
33	Photoswitching of an n-Type Organic Field Effect Transistor by a Reversible Photochromic Reaction in the Dielectric Film. Journal of Physical Chemistry C, 2011, 115, 3106-3114.	3.1	61
34	Photostimulation of Wholeâ€Cell Conductance in Primary Rat Neocortical Astrocytes Mediated by Organic Semiconducting Thin Films. Advanced Healthcare Materials, 2014, 3, 392-399.	7.6	61
35	A silk platform that enables electrophysiology and targeted drug delivery in brain astroglial cells. Biomaterials, 2010, 31, 7883-7891.	11.4	59
36	Influence of Incorporating Different Electron-Rich Thiophene-Based Units on the Photovoltaic Properties of Isoindigo-Based Conjugated Polymers: An Experimental and DFT Study. Macromolecules, 2013, 46, 8488-8499.	4.8	58

3

#	Article	IF	Citations
37	Real-Time Vibronic Coupling Dynamics in a Prototypical Conjugated Oligomer. Physical Review Letters, 1999, 83, 231-234.	7.8	57
38	Effect of wave-function delocalization on the exciton splitting in organic conjugated materials. Physical Review B, 2000, 62, 6296-6300.	3.2	57
39	Disorder influenced optical properties of α-sexithiophene single crystals and thin evaporated films. Chemical Physics, 1998, 227, 49-56.	1.9	54
40	Morphology Controlled Energy Transfer in Conjugated Molecular Thin Films. Advanced Materials, 2001, 13, 355-358.	21.0	54
41	Biofunctional Silk/Neuron Interfaces. Advanced Functional Materials, 2012, 22, 1871-1884.	14.9	52
42	Correlation between Dielectric/Organic Interface Properties and Key Electrical Parameters in PPV-based OFETs. Journal of Physical Chemistry B, 2008, 112, 10130-10136.	2.6	51
43	Molecular Tailoring of New Thieno(bis)imide-Based Semiconductors for Single Layer Ambipolar Light Emitting Transistors. Chemistry of Materials, 2013, 25, 668-676.	6.7	51
44	Organic light emitting diodes with spin polarized electrodes. Journal of Applied Physics, 2003, 93, 7682-7683.	2.5	49
45	Electrical characterization of organic based transistors: stability issues. Polymers for Advanced Technologies, 2005, 16, 227-231.	3.2	48
46	Excimer Emission in Single Layer Electroluminescent Devices Based on [Ir(4,5-diphenyl-2-methylthiazolo) ₂ (5-methyl-1,10-phenanthroline)] ⁺ [PF _{6< Journal of Physical Chemistry C, 2009, 113, 12517-12522.}	/su&b≱]∢su	p>4â8².
47	Organic lightâ€emitting transistors with voltageâ€ŧunable lit area and full channel illumination. Laser and Photonics Reviews, 2013, 7, 1011-1019.	8.7	48
48	Spiderâ€Like Oligothiophenes. Chemistry - A European Journal, 2008, 14, 459-471.	3.3	45
49	Thienopyrrolyl dione end-capped oligothiophene ambipolar semiconductors for thin film- and light emitting transistors. Chemical Communications, 2011, 47, 11840.	4.1	45
50	Simultaneous Tenfold Brightness Enhancement and Emittedâ€Light Spectral Tunability in Transparent Ambipolar Organic Lightâ€Emitting Transistor by Integration of Highâ€∢i>k∢/i> Photonic Crystal. Advanced Functional Materials, 2017, 27, 1605164.	14.9	45
51	Luminescence quantum yield of molecular aggregates and excitons in \hat{i}_{\pm} -sexithienyl thin films at variable temperature. Journal of Applied Physics, 2000, 88, 5158-5165.	2.5	43
52	Effect of different fabrication methods on the chemo-physical properties of silk fibroin films and on their interaction with neural cells. RSC Advances, 2016, 6, 9304-9314.	3.6	43
53	Investigation of the Optoelectronic Properties of Organic Light-Emitting Transistors Based on an Intrinsically Ambipolar Material. Journal of Physical Chemistry C, 2008, 112, 12993-12999.	3.1	42
54	Predicting thermal stability of organic solar cells through an easy and fast capacitance measurement. Solar Energy Materials and Solar Cells, 2015, 141, 240-247.	6.2	42

#	Article	IF	CITATIONS
55	Noncovalent Functionalization of 2D Black Phosphorus with Fluorescent Boronic Derivatives of Pyrene for Probing and Modulating the Interaction with Molecular Oxygen. ACS Applied Materials & 2019, 11, 22637-22647.	8.0	42
56	A nanostructured conductive bio-composite of silk fibroin–single walled carbon nanotubes. Journal of Materials Chemistry B, 2014, 2, 1424.	5.8	40
57	Effects of Surface Chemical Composition on the Early Growth Stages of \hat{l}_{\pm} -Sexithienyl Films on Silicon Oxide Substrates. Journal of Physical Chemistry B, 2006, 110, 258-263.	2.6	37
58	Fine Structural Tuning of Cyanated Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]silole–Oligothiophene Copolymers: Synthesis, Characterization, and Photovoltaic Response. Macromolecules, 2013, 46, 6419-6430.	4.8	37
59	Structural tuning of quinoxaline-benzodithiophene copolymers via alkyl side chain manipulation: synthesis, characterization and photovoltaic properties. Journal of Materials Chemistry A, 2014, 2, 11162-11170.	10.3	37
60	LRRC8A is essential for swellingâ€activated chloride current and for regulatory volume decrease in astrocytes. FASEB Journal, 2019, 33, 101-113.	0.5	37
61	Innovative Multifunctional Silk Fibroin and Hydrotalcite Nanocomposites: A Synergic Effect of the Components. Biomacromolecules, 2014, 15, 158-168.	5.4	35
62	2D π-conjugated benzo[1,2-b:4,5-b′]dithiophene- and quinoxaline-based copolymers for photovoltaic applications. RSC Advances, 2013, 3, 24543.	3.6	34
63	Absorption at the dipole-forbidden optical gap of crystalline C60. Chemical Physics Letters, 1995, 236, 135-140.	2.6	33
64	The polarized infrared and Raman spectra of α-T6 single crystal: An experimental and theoretical study. Journal of Chemical Physics, 2000, 112, 5957-5969.	3.0	33
65	Organic light-emitting transistors using concentric source/drain electrodes on a molecular adhesion layer. Applied Physics Letters, 2006, 88, 163511.	3.3	33
66	Toward Real Setting Applications of Organic and Perovskite Solar Cells: A Comparative Review. Energy Technology, 2021, 9, 2000901.	3.8	33
67	Silk doped with a bio-modified dye as a viable platform for eco-friendly luminescent solar concentrators. RSC Advances, 2012, 2, 8610.	3.6	32
68	Portable Bio/Chemosensoristic Devices: Innovative Systems for Environmental Health and Food Safety Diagnostics. Frontiers in Public Health, 2017, 5, 80.	2.7	32
69	Flux measurements on ferromagnetic microprobes by electron holography. Physical Review B, 1994, 50, 6823-6828.	3.2	31
70	Cell penetrating silica nanoparticles doped with two-photon absorbing fluorophores. Tetrahedron, 2006, 62, 10434-10440.	1.9	31
71	Integration of a silk fibroin based film as a luminescent down-shifting layer in ITO-free organic solar cells. RSC Advances, 2014, 4, 44815-44822.	3.6	31
72	Organic Light-Emitting Transistors with Simultaneous Enhancement of Optical Power and External Quantum Efficiency via Conjugated Polar Polymer Interlayers. ACS Applied Materials & Samp; Interfaces, 2018, 10, 25580-25588.	8.0	31

#	Article	IF	CITATIONS
73	A time-temperature integrator based on fluorescent and polymorphic compounds. Scientific Reports, 2013, 3, 2581.	3.3	30
74	Structure–property relationships in multifunctional thieno(bis)imide-based semiconductors with different sized and shaped N-alkyl ends. Journal of Materials Chemistry C, 2014, 2, 3448.	5.5	30
7 5	Optical spectroscopy of unsolvated and solvated crystalline Alq3. Synthetic Metals, 2001, 122, 31-35.	3.9	29
76	Apex anharmonicity observed by Raman scattering in 18O substituted YBa2Cu3O6+x. Physica C: Superconductivity and Its Applications, 1994, 226, 101-105.	1.2	28
77	Location of the lowest exciton in C60 single crystal by two-photon excitation spectroscopy. Chemical Physics Letters, 1995, 245, 107-112.	2.6	28
78	Pyridineâ^'EDOT Heteroaryleneâ^'Vinylene Donorâ^'Acceptor Polymers. Macromolecules, 2010, 43, 9698-9713.	4.8	28
79	Continuous-flow synthesis of an efficient methanofullerene acceptor for bulk-heterojunction solar cells. Energy and Environmental Science, 2011, 4, 725-727.	30.8	28
80	N-type perylene-based organic semiconductors for functional neural interfacing. Journal of Materials Chemistry B, 2013, 1, 3850.	5.8	28
81	Anthracene-based molecular emitters for non-doped deep-blue organic light emitting transistors. Journal of Materials Chemistry C, 2016, 4, 9411-9417.	5.5	28
82	Computational Modeling of Isoindigo-Based Polymers Used in Organic Solar Cells. Journal of Physical Chemistry C, 2013, 117, 17940-17954.	3.1	27
83	Synthesis, size-dependent optoelectronic and charge transport properties of thieno(bis)imide end-substituted molecular semiconductors. Organic Electronics, 2013, 14, 3089-3097.	2.6	27
84	Ï€-Core tailoring for new high performance thieno(bis)imide based n-type molecular semiconductors. Chemical Communications, 2013, 49, 4298-4300.	4.1	27
85	A Nanoscale Interface Promoting Molecular and Functional Differentiation of Neural Cells. Scientific Reports, 2016, 6, 31226.	3.3	27
86	Aquatic Toxicities of Halogenated Benzoic Acids to Tetrahymena pyriformis. Bulletin of Environmental Contamination and Toxicology, 1999, 62, 616-622.	2.7	25
87	A vinyleneâ€linked benzo[1,2â€ <i>b</i> :4,5â€ <i>b'</i>]dithiopheneâ€2,1,3â€benzothiadiazole lowâ€bandgap po Journal of Polymer Science Part A, 2012, 50, 2829-2840.	olymer. 2.3	25
88	Mapping of Charge Distribution in Organic Field-Effect Transistors by Confocal Photoluminescence Electromodulation Microscopy. Nano Letters, 2014, 14, 1695-1700.	9.1	25
89	Chemical design enables the control of conformational polymorphism in functional 2,3-thieno(bis)imide-ended materials. Chemical Communications, 2015, 51, 2033-2035.	4.1	25
90	Efficient and Versatile Interconnection Layer by Solvent Treatment of PEDOT:PSS Interlayer for Airâ€Processed Organic Tandem Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600770.	3.7	25

#	Article	IF	CITATIONS
91	Induced photodegradation of quinoxaline based copolymers for photovoltaic applications. Solar Energy Materials and Solar Cells, 2016, 144, 150-158.	6.2	25
92	Stimulation of water and calcium dynamics in astrocytes with pulsed infrared light. FASEB Journal, 2020, 34, 6539-6553.	0.5	25
93	Correlation among Morphology, Crystallinity, and Charge Mobility in OFETs Made of Quaterthiophene Alkyl Derivatives on a Transparent Substrate Platform. Journal of Physical Chemistry C, 2011, 115, 23164-23169.	3.1	24
94	Impact of environmentally friendly processing on polymer solar cells: Performance, thermal stability and morphological study by imaging techniques. Solar Energy Materials and Solar Cells, 2016, 155, 436-445.	6.2	24
95	Ambipolar organic light-emitting transistors employing heterojunctions of n-type and p-type materials as the active layer. Journal of Physics Condensed Matter, 2006, 18, S2127-S2138.	1.8	22
96	A physical-based equivalent circuit model for an organic/electrolyte interface. Organic Electronics, 2016, 35, 176-185.	2.6	22
97	Bio-doping of regenerated silk fibroin solution and films: a green route for biomanufacturing. RSC Advances, 2014, 4, 33687-33694.	3.6	21
98	Tuning polymorphism in 2,3-thienoimide capped oligothiophene based field-effect transistors by implementing vacuum and solution deposition methods. Journal of Materials Chemistry C, 2018, 6, 5601-5608.	5.5	21
99	Charge–Exciton Interaction Rate in Organic Field-Effect Transistors by Means of Transient Photoluminescence Electromodulated Spectroscopy. ACS Photonics, 2017, 4, 282-291.	6.6	21
100	ITO-Free Organic Light-Emitting Transistors with Graphene Gate Electrode. ACS Photonics, 2014, 1, $1082-1088$.	6.6	20
101	A Lysinated Thiopheneâ€Based Semiconductor as a Multifunctional Neural Bioorganic Interface. Advanced Healthcare Materials, 2015, 4, 1190-1202.	7.6	20
102	A Glialâ€6ilicon Nanowire Electrode Junction Enabling Differentiation and Noninvasive Recording of Slow Oscillations from Primary Astrocytes. Advanced Biology, 2020, 4, e1900264.	3.0	20
103	Electron holography in the study of the leakage field of magnetic force microscope sensor tips. Applied Physics Letters, 1993, 62, 1839-1841.	3.3	19
104	Morphology and trap luminescence in thin oligothiophene films on HOPG. Chemical Physics, 2002, 285, 345-353.	1.9	19
105	Molecular Packing Effects on the Optical Spectra and Triplet Dynamics in Oligofluorene Films. Journal of Physical Chemistry B, 2008, 112, 11605-11609.	2.6	19
106	Ambipolar field-effect transistor based on î±,ï‰-dihexylquaterthiophene and î±,ï‰-diperfluoroquaterthiophene vertical heterojunction. Microelectronics Reliability, 2010, 50, 1861-1865.	1.7	19
107	Efficiency enhancement of P3HT:PCBM solar cells containing scattering Zn-Al hydrotalcite nanoparticles in the PEDOT:PSS layer. Organic Photonics and Photovoltaics, 2013, 1, 1-10.	1.3	19
108	Keratin Film as Natural and Ecoâ€Friendly Support for Organic Optoelectronic Devices. Advanced Sustainable Systems, 2019, 3, 1900080.	5.3	19

#	Article	IF	CITATIONS
109	Optical properties of solid C60. Synthetic Metals, 1996, 83, 213-219.	3.9	18
110	The growth and characterization of a-sexithienyl–based light–emitting diodes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1997, 355, 763-773.	3.4	18
111	Towards Molecular Design Rationalization in Branched Multiâ€Thiophene Semiconductors: The 2â€Thienylâ€Persubstituted αâ€Oligothiophenes. Chemistry - A European Journal, 2010, 16, 9086-9098.	3.3	18
112	Synthesis and characterization of benzodithiophene and benzotriazole-based polymers for photovoltaic applications. Beilstein Journal of Organic Chemistry, 2016, 12, 1629-1637.	2.2	18
113	A new quinoxaline and isoindigo based polymer as donor material for solar cells: Role of ecofriendly processing solvents on the device efficiency and stability. Journal of Polymer Science Part A, 2017, 55, 234-242.	2.3	18
114	2,3-Thienoimide-ended oligothiophenes as ambipolar semiconductors for multifunctional single-layer light-emitting transistors. Journal of Materials Chemistry C, 2020, 8, 15048-15066.	5.5	18
115	Observation of interface excitons and energy transfer processes in an oligo-thiophene multi-layer structure. Chemical Physics Letters, 1995, 242, 207-211.	2.6	17
116	Photoinduced charge transfer in complex architectured films of c60 and donor-like molecules. Synthetic Metals, 1999, 103, 2392-2394.	3.9	17
117	Optoelectronic properties of OLEC devices based on phenylquinoline and phenylpyridine ionic iridium complexes. Dalton Transactions, 2012, 41, 9227.	3.3	17
118	Engineering of keratin functionality for the realization of bendable all-biopolymeric micro-electrode array as humidity sensor. Biosensors and Bioelectronics, 2019, 141, 111480.	10.1	17
119	Naturally functionalized silk as useful material for photonic applications. Composites Part B: Engineering, 2015, 71, 152-158.	12.0	16
120	Synergic effect of unsaturated inner bridges and polymorphism for tuning the optoelectronic properties of 2,3-thieno(bis)imide based materials. Journal of Materials Chemistry C, 2015, 3, 121-131.	5.5	16
121	Electrical Stimulation by an Organic Transistor Architecture Induces Calcium Signaling in Nonexcitable Brain Cells. Advanced Healthcare Materials, 2019, 8, e1801139.	7.6	16
122	Ordering of low energy electronic excitations in \hat{l}_{\pm} -sexithiophene single crystal. Synthetic Metals, 1997, 84, 863-864.	3.9	15
123	Correlation between gate-dielectric morphology at the nanoscale and charge transport properties in organic field-effect transistors. RSC Advances, 2015, 5, 11797-11805.	3.6	15
124	Silk fibroin film from goldenâ€yellow <scp><i>B</i></scp> <i>ombyx mori</i> is a biocomposite that contains lutein and promotes axonal growth of primary neurons. Biopolymers, 2016, 105, 287-299.	2.4	15
125	Side chain modification on PDI-spirobifluorene-based molecular acceptors and its impact on organic solar cell performances. New Journal of Chemistry, 2018, 42, 18633-18640.	2.8	15
126	Glial Interfaces: Advanced Materials and Devices to Uncover the Role of Astroglial Cells in Brain Function and Dysfunction. Advanced Healthcare Materials, 2021, 10, e2001268.	7.6	15

#	Article	IF	CITATIONS
127	Picosecond time evolution of photoexcitations at 2.33 eV in \hat{l}_{\pm} -sexithyenil thin films. Physical Review B, 1993, 48, 15326-15331.	3.2	14
128	Preresonance Raman Spectrum of C76. The Journal of Physical Chemistry, 1994, 98, 7933-7935.	2.9	14
129	Molecular Hostâ^Guest Energy-Transfer System with an Ultralow Amplified Spontaneous Emission Threshold Employing an Ambipolar Semiconducting Host Matrix. Journal of Physical Chemistry B, 2010, 114, 120-127.	2.6	14
130	Selective MW-assisted surface chemical tailoring of hydrotalcites for fluorescent and biocompatible nanocomposites. RSC Advances, 2014, 4, 11840.	3.6	14
131	Morphology and Electronic Properties of <i>N</i> , <i>N</i> à€²-Ditridecylperylene-3,4,9,10-tetracarboxylic Diimide Layered Aggregates: From Structural Predictions to Charge Transport. Journal of Physical Chemistry C, 2017, 121, 21857-21864.	3.1	14
132	Revealing Minor Electrical Losses in the Interconnecting Layers of Organic Tandem Solar Cells. Advanced Materials Interfaces, 2017, 4, 1700776.	3.7	14
133	Impact of environmentally friendly processing solvents on the properties of bladeâ€coated polymer solar cells. Journal of Polymer Science Part A, 2019, 57, 487-494.	2.3	14
134	On electron holographic mapping of electric and magnetic fields: recording and processing problems and field information reliability. Ultramicroscopy, 1994, 53, 19-25.	1.9	13
135	Nanoscale femtosecond spectroscopy for material science and nanotechnology. Synthetic Metals, 2003, 139, 687-690.	3.9	13
136	Perovskite Solar Cells: High-Performance and Stable Perovskite Solar Cells Based on Dopant-Free Arylamine-Substituted Copper(II) Phthalocyanine Hole-Transporting Materials (Adv. Energy Mater.) Tj ETQq0 0 0	rg BT. Øve	rlo ca 10 Tf 50
137	Epitaxial multilayers of alkanes on two-dimensional black phosphorus as passivating and electrically insulating nanostructures. Nanoscale, 2019, 11, 17252-17261.	5.6	13
138	<title>Third-order nonlinear optical properties of fullerenes</title> ., 1994,,.		12
139	Efficient as-cast bulk-heterojunction solar cells based on a tert-butyl substituted methanofullerene acceptor. Journal of Materials Chemistry, 2011, 21, 18308.	6.7	12
140	Contact Resistance in Ambipolar Organic Field-Effect Transistors Measured by Confocal Photoluminescence Electro-Modulation Microscopy. ACS Applied Materials & Electro-Modulatio	8.0	12
141	An Integrated Surfactant Solubilization and PCB Bioremediation Process for Soils. Bioremediation Journal, 1998, 2, 43-56.	2.0	11
142	Optical properties and the photoluminescence quantum yield of organic molecular materials. Journal of Optics, 2000, 2, 577-583.	1.5	11
143	SILK.IT project: Silk Italian Technology for industrial biomanufacturing. Composites Part B: Engineering, 2015, 68, 281-287.	12.0	11
144	Theoretical insights on morphology and charge transport properties of two-dimensional N,N′-ditridecylperylene-3,4,9,10-tetra carboxylic diimide aggregates. RSC Advances, 2016, 6, 40724-40730.	3.6	11

#	Article	IF	CITATIONS
145	A potential J aggregate molecular system: crystal packing and optical properties of 4,4′-bis(2,3,4,5,6-pentafluorostyryl)stilbene. Synthetic Metals, 2003, 139, 909-912.	3.9	9
146	Engineering organic/inorganic alumina-based films as dielectrics for red organic light emitting transistors. Thin Solid Films, 2016, 616, 408-414.	1.8	9
147	On the Nature of Charge-Injecting Contacts in Organic Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 30616-30626.	8.0	9
148	Observation of Multiple Stop Bands in Photonic Bandgap Structures Doped with Organic Dyes. Advanced Materials, 2002, 14, 1023.	21.0	8
149	Effects of constant voltage stress on p- and n-type organic thin film transistors with poly(methyl) Tj ETQq1 1 0.784	1314 rgBT 1.7	 Overlock
150	A self-assembled lysinated perylene diimide film as a multifunctional material for neural interfacing. Journal of Materials Chemistry B, 2016, 4, 2921-2932.	5.8	8
151	Simple and accurate single transistor technique for parameters extraction from organic and inorganic thin film devices. Organic Electronics, 2018, 63, 376-383.	2.6	8
152	Simulation of electron holographic contour maps of linear charged dislocations. Ultramicroscopy, 1995, 57, 385-390.	1.9	7
153	Influence of the substrate platform on the opto-electronic properties of multi-layer organic light-emitting field-effect transistors. Journal Physics D: Applied Physics, 2011, 44, 224018.	2.8	7
154	A Computational Predictive Approach for Controlling the Morphology of Functional Molecular Aggregates on Substrates. Advanced Theory and Simulations, 2019, 2, 1900156.	2.8	7
155	Enhanced Thermal Stability of Inverted Polymer Solar Cells Based on Solutionâ€Processed WO _{<i>x</i>} as an Anode Interlayer. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000748.	1.8	7
156	Defect state emission in α-sexithiophene single crystal. Synthetic Metals, 1997, 84, 599-600.	3.9	6
157	Excitation dynamics in α-sexithiophene single crystals and UHV-grown films. Journal of Luminescence, 1998, 76-77, 416-419.	3.1	6
158	Morphology dependent fluorescence in \hat{l}_{\pm} -sexithienyl thin film at 4.2k. Synthetic Metals, 1999, 101, 592-593.	3.9	6
159	Nanostructured Organic Thin Films: Electronic Energetics and Devices. International Journal of Modern Physics B, 2001, 15, 3722-3726.	2.0	6
160	Optical coupling of flexible microstructured organic light sources for automotive applications. Synthetic Metals, 2003, 139, 913-916.	3.9	6
161	Molecular orientation in ultrathin films of \hat{l}_{\pm} -sexithiophene on silicon dioxide revealed by spatially resolved confocal spectroscopy. Synthetic Metals, 2005, 155, 287-290.	3.9	6
162	54-3: <i>Invited Paper</i> : Flexible Active-Matrix OLET Display on a Plastic Substrate. Digest of Technical Papers SID International Symposium, 2016, 47, 739-742.	0.3	6

#	Article	IF	Citations
163	Tuning the Electronâ€Acceptor Properties of [60]Fullerene by Tailored Functionalization for Application in Bulk Heterojunction Solar Cells. Asian Journal of Organic Chemistry, 2016, 5, 676-684.	2.7	6
164	P-176: Innovative Trilayer Organic Light Emitting Transistor (OLET) Structure for Blue Emission. Digest of Technical Papers SID International Symposium, 2016, 47, 1779-1782.	0.3	6
165	Effect of Different Ionic Surfactants on the Structural, Photophysical, and Morphological Properties of Waterâ€Based P3HT:PCBM Nanoparticle Dispersions and Films. Particle and Particle Systems Characterization, 2021, 38, 2000219.	2.3	6
166	Low energy electronic and optical properties of \hat{l}_{\pm} -sexithiophene single crystals. Materials Science and Engineering C, 1998, 5, 173-177.	7.3	5
167	Interplay between optical properties and molecular packing in novel isolated crystalline phases of tris-(8-hydroxyquinoline) Aluminium (III). Synthetic Metals, 2001, 121, 1499-1500.	3.9	5
168	Effects of thermal and electrical stress on DH4T-based organic thin-film-transistors with PMMA gate dielectrics. Microelectronics Reliability, 2015, 55, 1790-1794.	1.7	5
169	Investigation of Mobility Transient on Organic Transistor by Means of DLTS Technique. IEEE Transactions on Electron Devices, 2016, 63, 4432-4439.	3.0	5
170	Synthesis and investigation on processing-depending polarized fluorescence emission in thin-films of $2,2\hat{a}\in^2$ -([2,2 $\hat{a}\in^2$ -bithiophene]-5,5 $\hat{a}\in^2$ -diyl)bis(5-octyl-4-phenyl-4H-thieno[2,3-c]pyrrol-6(5H)-one). Journal of Materials Chemistry C, 2017, 5, 10320-10331.	5.5	5
171	Silk Fibroin Based Technology for Industrial Biomanufacturing. , 2019, , 409-430.		5
172	Chainlength dependence of interchain splitting in electroluminescent organic conjugated materials. Synthetic Metals, 2001, 116, 301-304.	3.9	4
173	Reliability study of organic complementary logic inverters using constant voltage stress. Solid-State Electronics, 2015, 113, 151-156.	1.4	4
174	Interplay between Charge Injection, Electron Transport, and Quantum Efficiency in Ambipolar Trilayer Organic Lightâ€Emitting Transistors. Advanced Materials Interfaces, 2022, 9, .	3.7	4
175	Investigation of the low energy optic excitations in crystalline C60. Synthetic Metals, 1996, 77, 177-179.	3.9	3
176	Coherent vibrational dynamics in sexithiophene films. Synthetic Metals, 1999, 101, 614-617.	3.9	3
177	On the Pulsed and Transient Characterization of Organic Field-Effect Transistors. IEEE Electron Device Letters, 2015, 36, 1359-1362.	3.9	3
178	Analysis of ESD effects on organic thin-film-transistors by means of TLP technique. , 2016, , .		3
179	P-164: Organic Light Emitting Transistors (OLETs) using ALD-grown Al ₂ O ₃ dielectric. Digest of Technical Papers SID International Symposium, 2016, 47, 1737-1739.	0.3	3
180	Open circuit voltage decay as a tool to assess the reliability of organic solar cells: P3HT:PCBM vs. HBG1:PCBM. , $2017, , .$		3

#	Article	IF	Citations
181	Application of an Open-Circuit Voltage Decay Model to Compare the Performances of Donor Polymers in Bulk Heterojunction Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 517-524.	2.5	3
182	A General Equivalent Circuit Model for a Metal/Organic/Liquid/Metal System. IEEE Transactions on Electron Devices, 2018, 65, 4555-4562.	3.0	3
183	Stray-field investigations on sharp ferromagnetic tips by electron holography. Journal of Magnetism and Magnetic Materials, 1994, 133, 422-424.	2.3	2
184	<title>Nonlinear spectroscopy of C60 single crystal</title> ., 1994, 2284, 120.		2
185	<title>Optical properties of fullerene-based heteromultilayers grown by molecular beam deposition</title> ., 1996,,.		2
186	Polarized Absorption and Davydov Splitting in \hat{l}_{\pm} -sexithienyl Single Crystal at 4.2K. Synthetic Metals, 1999, 101, 573-574.	3.9	2
187	Raman and far infrared characterization of the simplest benzylic amide [2] catenane. Synthetic Metals, 1999, 102, 1556-1557.	3.9	2
188	Modeling of the photophysical properties of α-sexithiophene thin films. Synthetic Metals, 2003, 139, 691-693.	3.9	2
189	Oligofluorene derivative in a host-guest system with a red-emitter: molecular packing effect on the host bimolecular recombination and guest ASE threshold reduction. Proceedings of SPIE, 2008, , .	0.8	2
190	Effects of constant voltage stress on organic complementary logic inverters. , 2014, , .		2
191	Stress-induced degradation of p- and n-type organic thin-film-transistors in the ON and OFF states. Microelectronics Reliability, 2014, 54, 1638-1642.	1.7	2
192	High-resolution photoluminescence electro-modulation microscopy by scanning lock-in. Review of Scientific Instruments, 2018, 89, 043705.	1.3	2
193	3D versus 2D Electrolyte–Semiconductor Interfaces in Rylenediimideâ€Based Electronâ€Transporting Waterâ€Gated Organic Fieldâ€Effect Transistors. Advanced Electronic Materials, 2020, 6, 2000638.	5.1	2
194	Silk Fibroin as Platform for Neural Cells and Hybrid Optoelectronics. Journal of Biobased Materials and Bioenergy, 2012, 6, 508-514.	0.3	2
195	Low Energy Excitons in Solid C60. Molecular Crystals and Liquid Crystals, 1994, 256, 187-198.	0.3	1
196	Organic heteromultilayers: electronic structure of sexithienyl/ thin films grown in ultra-high vacuum. Journal of Optics, 1998, 7, 151-157.	0.5	1
197	Femtosecond Transient Absorption Spectroscopy in $\hat{l}\pm$ -sexithienyl thin films. Synthetic Metals, 1999, 101, 555-556.	3.9	1
198	Flexible microstructured organic light sources for automotive applications. , 2004, , .		1

#	Article	IF	Citations
199	Ambipolar light-emitting field-effect transistors based on molecular thin films. , 2006, 6333, 147.		1
200	Morphology-Correlated Photophysics in Organic Semiconductor Thin Films by Confocal Laser Microscopy and Spectroscopy. , 2006, , 153-181.		1
201	OLET architectures for electrically-pumped organic lasers. Proceedings of SPIE, 2008, , .	0.8	1
202	Drift-Diffusion and Analytical Modeling of the Recombination Mechanisms in Organic Solar Cells: Effect of the Nonconstant Charge Distribution Inside the Active Layer. IEEE Journal of Photovoltaics, 2018, 8, 1677-1684.	2.5	1
203	Electron holography of magnetic and electric microfields. , 1995, , 159-168.		1
204	Optical absorption and photoluminescence in crystalline C 60., 1995,,.		0
205	Collective vibrational coherence in sexithiophenes films. Optical Materials, 1999, 12, 383-386.	3.6	0
206	The effect of intermolecular interaction on the electronic properties of quaterylene. Synthetic Metals, 1999, 102, 1589-1590.	3.9	0
207	Modelling of vibrational Davydov splittings in α-T6 single crystal. Synthetic Metals, 2001, 119, 237-238.	3.9	O
208	Temperature dependent optical emission efficiency in vacuum sublimed \hat{l}_{\pm} -sexithienyl thin films. Synthetic Metals, 2001, 121, 1347-1348.	3.9	0
209	Photonic engineering of nonlinear-optical properties of hybrid materials for efficient ultrafast optical switching (PHOENIX)., 2004, 5464, 39.		0
210	Organic Light-Emitting Transistors. , 0, , .		0
211	Influence of the dielectric and of the active layer doping on the FET mobility in PPV-based devices. , 2007, , .		O
212	Very low amplified spontaneous emission threshold from a molecular host-guest energy transfer system and electroluminescence from light-emitting diode structure. Proceedings of SPIE, 2009, , .	0.8	0
213	Photoswitchable OFETs controlled by optical bistability in the dielectric layer. , 2011, , .		O
214	Organic light-emitting transistor technology., 2011,,.		0
215	Selective Self-Assembled Monolayer to passivate organic cell stimulating and sensing transistor (OCSTs). , 2015 , , .		0
216	An organic transistor architecture for stimulation of calcium signalling in primary rat cortical astrocytes. , 2015, , .		0

ARTICLE IF CITATIONS
217 Optic Characterization of Oligo-Thiophene Multilayers., 1995, , 297-302.