Dhruv Saxena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7413715/publications.pdf

Version: 2024-02-01

24 papers

1,236 citations

567281 15 h-index 713466 21 g-index

24 all docs

24 docs citations

times ranked

24

1671 citing authors

#	Article	IF	CITATIONS
1	Optically pumped room-temperature GaAs nanowire lasers. Nature Photonics, 2013, 7, 963-968.	31.4	503
2	Selective-Area Epitaxy of Pure Wurtzite InP Nanowires: High Quantum Efficiency and Room-Temperature Lasing. Nano Letters, 2014, 14, 5206-5211.	9.1	198
3	Design and Room-Temperature Operation of GaAs/AlGaAs Multiple Quantum Well Nanowire Lasers. Nano Letters, 2016, 16, 5080-5086.	9.1	80
4	Mode Profiling of Semiconductor Nanowire Lasers. Nano Letters, 2015, 15, 5342-5348.	9.1	73
5	Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires. Nature Communications, 2016, 7, 11927.	12.8	68
6	A nanophotonic laser on a graph. Nature Communications, 2019, 10, 226.	12.8	51
7	Large-Scale Statistics for Threshold Optimization of Optically Pumped Nanowire Lasers. Nano Letters, 2017, 17, 4860-4865.	9.1	31
8	Self-organized lasers from reconfigurable colloidal assemblies. Nature Physics, 2022, 18, 939-944.	16.7	29
9	Toward electrically driven semiconductor nanowire lasers. Nanotechnology, 2019, 30, 192002.	2.6	28
10	Polarization Tunable, Multicolor Emission from Core–Shell Photonic III–V Semiconductor Nanowires. Nano Letters, 2012, 12, 6428-6431.	9.1	27
11	Optical Study of p-Doping in GaAs Nanowires for Low-Threshold and High-Yield Lasing. Nano Letters, 2019, 19, 362-368.	9.1	24
12	An Order of Magnitude Increase in the Quantum Efficiency of (Al)GaAs Nanowires Using Hybrid Photonic–Plasmonic Modes. Nano Letters, 2015, 15, 307-312.	9.1	19
13	Highly Strained Ill–V–V Coaxial Nanowire Quantum Wells with Strong Carrier Confinement. ACS Nano, 2019, 13, 5931-5938.	14.6	19
14	Biolasing from Individual Cells in a Lowâ€∢i>Q Resonator Enables Spectral Fingerprinting. Advanced Optical Materials, 2020, 8, 1901573.	7.3	19
15	Strong Amplified Spontaneous Emission from High Quality GaAs _{1â€"<i>x</i>} Sb _{<i>x</i>} Single Quantum Well Nanowires. Journal of Physical Chemistry C, 2017, 121, 8636-8644.	3.1	15
16	Flexible and tensile microporous polymer fibers for wavelength-tunable random lasing. Nanoscale, 2020, 12, 12357-12363.	5.6	15
17	Modal refractive index measurement in nanowire lasersâ€"a correlative approach. Nano Futures, 2018, 2, 035004.	2.2	8
18	Biocompatible Polymer and Protein Microspheres with Inverse Photonic Glass Structure for Random Microâ€Biolasers. Advanced Photonics Research, 2021, 2, 2100036.	3.6	8

#	Article	IF	CITATIONS
19	Optical characterisation of nanowire lasers. Progress in Quantum Electronics, 2022, 85, 100408.	7.0	8
20	Design Considerations for Semiconductor Nanowire–Plasmonic Nanoparticle Coupled Systems for High Quantum Efficiency Nanowires. Small, 2013, 9, 3964-3969.	10.0	7
21	Semiconductor Nanowire Optoelectronic Devices. Semiconductors and Semimetals, 2016, 94, 1-15.	0.7	4
22	III–V semiconductor nanowires for optoelectronic device applications., 2013,,.		1
23	III-V semiconductor nanowire lasers. , 2014, , .		1
24	Biocompatible Polymer and Protein Microspheres with Inverse Photonic Glass Structure for Random Microâ€Biolasers. Advanced Photonics Research, 2021, 2, 2170025.	3.6	0