
Takaaki Manabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7413092/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis, crystal structure, and electrochemical properties of niobium-substituted hollandite-type titanium dioxides, K Ti1–Nb O2, with different potassium content in the tunnel space. Solid State Ionics, 2021, 369, 115727.	2.7	1
2	Electrochemical Properties of Titanium Oxides with Disordered Layer Stacking through Flocculation of Exfoliated Titania Nanosheets. Journal of the Electrochemical Society, 2019, 166, A5301-A5307.	2.9	2
3	Low temperature vanadium oxide thin film sintering by thermal and excimer-laser-assisted Metal-Organic Deposition (MOD). Ceramics International, 2018, 44, S26-S29.	4.8	6
4	Origin of the dimpled critical-current-versus-magnetic-field-angle relation in YBa2Cu3O7films studied using sub-MeV ion irradiation. Superconductor Science and Technology, 2016, 29, 065002.	3.5	6
5	Enhancement of critical current density in YBa2Cu3O7 films using a semiconductor ion implanter. Journal of Applied Physics, 2015, 117, .	2.5	20
6	Preparation of superconducting films by metal organic deposition. Synthesiology, 2015, 7, 239-250.	0.2	1
7	Preparation of superconducting films by metal organic deposition. Synthesiology, 2014, 7, 247-257.	0.2	2
8	Comparison of reduction agents in the synthesis of infinite-layer LaNiO2 films. Physica C: Superconductivity and Its Applications, 2014, 506, 83-86.	1.2	16
9	Epitaxial strain effect in perovskite RENiO3 films (RE= La–Eu) prepared by metal organic decomposition. Physica C: Superconductivity and Its Applications, 2014, 505, 24-31.	1.2	9
10	Influence of middle-energy ion-irradiation on the flux pinning properties of YBCO films: Comparison between different synthesis methods. Journal of Physics: Conference Series, 2014, 507, 022019.	0.4	7
11	Large-area YBCO films with low-Rs prepared by excimer-laser-assisted MOD (ELAMOD) on sapphire substrates. Physica C: Superconductivity and Its Applications, 2013, 484, 183-185.	1.2	1
12	Enhanced Jc of MOD-YBCO Films by Modifying Surface States of CeO2 Buffer Layers on Sapphire Substrates. Physics Procedia, 2013, 45, 177-180.	1.2	6
13	Improved conductivity of infinite-layer LaNiO2 thin films by metal organic decomposition. Physica C: Superconductivity and Its Applications, 2013, 495, 134-140.	1.2	28
14	Dimpling in critical current density vs. magnetic field angle in YBa2Cu3O7 films irradiated with 3-MeV gold ions. Journal of Applied Physics, 2013, 114, 233911.	2.5	13
15	RE dependence of superconductivity in parent T'-RE2CuO4 – implication on the nature of superconductivity. Materials Research Society Symposia Proceedings, 2012, 1434, 10.	0.1	0
16	4-fold enhancement in the critical current density of YBa2Cu3O7 films by practical ion irradiation. Applied Physics Letters, 2012, 101, .	3.3	39
17	Partial Substitution of Rare-Earth Ions for Yttrium Through Multi-Layer Precursors in the YBa2Cu3O7 Films Grown by Fluorine-Free Metal Organic Deposition. Physics Procedia, 2012, 36, 1643-1648.	1.2	4
18	Enhancement of in-field critical current density by irradiation of MeV-energy ions in YBCO films prepared by fluorine-free metal-organic deposition. Physics Procedia, 2012, 27, 276-279.	1.2	1

Τακαακι Μαναβε

#	Article	IF	CITATIONS
19	Temperature dependence of magnetic-field angle dependent critical current density and the flux pinning in YBa2Cu3O7 thin films. Physica C: Superconductivity and Its Applications, 2012, 478, 19-28.	1.2	20
20	Preparation of Y123 Thick Films by Fluorine-Free MOD Using a Novel Solution. IEEE Transactions on Applied Superconductivity, 2011, 21, 2775-2778.	1.7	7
21	Thickness Dependence of the Critical-Current Density and its Relation to Near-Interface Crystal Imperfections in Fluorine-Free-MOD YBCO Films. IEEE Transactions on Applied Superconductivity, 2011, 21, 2933-2936.	1.7	17
22	Increase of achievable film thickness by UV-lamp irradiation in a fluorine-free metal-organic deposition process of YBa2Cu3O7. Thin Solid Films, 2011, 519, 8063-8065.	1.8	11
23	RE dependence of superconductivity in parent T′-RE2CuO4. Physica C: Superconductivity and Its Applications, 2011, 471, 686-689.	1.2	9
24	Homoepitaxial growth of MOD-YBCO thick films on evaporated and MOD templates. Physica C: Superconductivity and Its Applications, 2011, 471, 956-959.	1.2	2
25	Reduced crystallization time of YBCO in a fluorine-free MOD process using uv-lamp irradiation. Physica C: Superconductivity and Its Applications, 2011, 471, 960-962.	1.2	11
26	Ti-Doped VO ₂ Films Grown on Glass Substrates by Excimer-Laser-Assisted Metal Organic Deposition Process. Japanese Journal of Applied Physics, 2011, 50, 01BE04.	1.5	28
27	Preparation of polycrystalline VO2 films on glass and TiO2/glass substrates by means of excimer laser assisted metal organic deposition. Journal of the Ceramic Society of Japan, 2010, 118, 788-791.	1.1	15
28	Effective Connection of Phase-Separated Metallic Pathways under Low Magnetic Fields in Charge-Ordered Insulators of Micropatterned Perovskite Manganite Thin Films. Journal of the Physical Society of Japan, 2010, 79, 014712.	1.6	3
29	New sign of vacuum ultraviolet driven crystal growth in ternary oxide Zn 3 V 2 O 8 films. Applied Physics A: Materials Science and Processing, 2010, 98, 885-888.	2.3	4
30	Material characterization of superconducting T′-Nd2CuO4 films synthesized by metal organic decomposition. Physica C: Superconductivity and Its Applications, 2010, 470, 1029-1032.	1.2	12
31	High temperature coefficients of resistance of VO2 films grown by excimer-laser-assisted metal organic deposition process for bolometer application. Materials Letters, 2010, 64, 1921-1924.	2.6	13
32	Generic phase diagram of Nd2â^'Ce CuO4. Physica C: Superconductivity and Its Applications, 2010, 470, S101-S103.	1.2	4
33	Environment-resistive coating for the thin-film-based superconducting fault-current limiter Ag/Au–Ag/YBa2Cu3O7/CeO2/Al2O3. Physica C: Superconductivity and Its Applications, 2010, 470, 221-224.	1.2	2
34	Measurement of Jc and n-value for (Y1â^'xGdx)Ba2Cu3Oy films prepared by MOD. Physica C: Superconductivity and Its Applications, 2010, 470, 1449-1451.	1.2	3
35	Strong flux pinning due to dislocations associated with stacking faults in Y Ba ₂ Cu ₃ O _{7 â^' l´} thin films prepared by fluorine-free metal organic deposition. Superconductor Science and Technology, 2010, 23, 105004.	3.5	36
36	Cerium Oxide Buffer Layers on Perovskite-Type Substrates for Preparation of \$c\$-Axis-Oriented \${m YBa}_{2}{m Cu}_{3}{m O}_{7}\$ Films by Fluorine-Free Metalorganic Deposition. IEEE Transactions on Applied Superconductivity, 2009, 19, 3463-3466.	1.7	1

#	ARTICLE Symustics and properties of superconducting symultimath	IF	CITATIONS
37	ARTICLE Synthesis and properties of superconducting amplimath xmlns:mml="http://www.w3.org/1998/Math/MathML"		

Τακαακί Μαναβέ

#	Article	IF	CITATIONS
55	Preparation of epitaxial YBa2Cu3O7â^'y films on CeO2-buffered yttria-stabilized zirconia substrates by fluorine-free metalorganic deposition. Physica C: Superconductivity and Its Applications, 2007, 458, 29-33.	1.2	26
56	Preparation of large-size Y123 films on CeO2-buffered sapphire substrates by MOD using a low-cost vacuum technique. Physica C: Superconductivity and Its Applications, 2007, 463-465, 549-553.	1.2	7
57	Microstructural observations of epitaxial Y123 films on CeO2-buffered sapphire by metal organic deposition. Journal of Physics: Conference Series, 2006, 43, 369-372.	0.4	4
58	Rectangular (1 cm ×12 cm) YBCO films prepared by MOD using spin-coating and wire-bar coating. Journal of Physics: Conference Series, 2006, 43, 366-368.	0.4	2
59	Preparation of high-Jc Y123 films on CeO2-buffered sapphire substrates by MOD using a low-cost vacuum technique. Physica C: Superconductivity and Its Applications, 2006, 445-448, 603-607.	1.2	6
60	Surface resistances of 5-cm-diameter YBCO films prepared by MOD for microwave applications. Physica C: Superconductivity and Its Applications, 2006, 445-448, 823-827.	1.2	11
61	Substrate effect on the temperature coefficient of resistance of La0.7Ca0.3MnO3 thin films prepared by metal organic deposition. Journal of Electroceramics, 2006, 16, 527-532.	2.0	14
62	Structural aspect of high-JcMOD-YBCO films prepared on large area CeO2-buffered YSZ substrates. Journal of Physics: Conference Series, 2006, 43, 349-352.	0.4	13
63	Fabrication of Double-Sided YBa2Cu3O7 Films on CeO2-Buffered Sapphire Substrates by MOD Process. IEICE Transactions on Electronics, 2006, E89-C, 182-185.	0.6	5
64	Preparation of Double-Sided YBCO Films on LaAlO3 by MOD Using Commercially Available Coating Solution. IEICE Transactions on Electronics, 2006, E89-C, 186-190.	0.6	7
65	Epitaxial growth of La0.7Ca0.3MnO3 thin films by KrF excimer laser assisted metal organic deposition process. Applied Surface Science, 2005, 247, 89-94.	6.1	15
66	Critical current density and microwave surface resistance of 5-cm-diameter YBCO films on LaAlO3 substrates prepared by MOD using an infrared image furnace. Physica C: Superconductivity and Its Applications, 2005, 417, 98-102.	1.2	15
67	Preparation of tin oxide films on various substrates by excimer laser metal organic deposition. Applied Surface Science, 2005, 247, 145-150.	6.1	19
68	Electrical Properties of La0.7Ca0.3MnO3Thin Films Obtained by Metal-Organic Deposition (MOD) using Excimer Laser and Thermal Annealing. Japanese Journal of Applied Physics, 2005, 44, 5129-5132.	1.5	9
69	Preparation of High-JcYBa2Cu3O7-yFilms on CeO2-Buffered Yttria-Stabilized Zirconia Substrates by Fluorine-Free Metalorganic Deposition. Japanese Journal of Applied Physics, 2005, 44, 4914-4918.	1.5	17
70	Metal Organic Deposition of Epitaxial Y123 Films Using a Low-Cost Vacuum Technique. IEEE Transactions on Applied Superconductivity, 2005, 15, 2927-2930.	1.7	13
71	Preparation of <tex>\$rm CeO_2\$</tex> -Buffer Layers for Large-Area MOD-YBCO Films <tex>\$(10times30 rm cm^2)\$</tex> With High- <tex>\$J_c\$</tex> . IEEE Transactions on Applied Superconductivity, 2005, 15, 2699-2702.	1.7	20
72	Distribution of Inductive <tex>\$J_c\$</tex> in Two-Dimensional Large-Size YBCO Films Prepared by Fluorine-Free MOD on <tex>\$rm CeO_2\$</tex> -Buffered Sapphire. IEEE Transactions on Applied Superconductivity, 2005, 15, 2923-2926.	1.7	14

Τακαακί Μαναβέ

#	Article	IF	CITATIONS
73	Microstructural and electrical properties of La0.7Ca0.3MnO3 thin films grown on SrTiO3 and LaAlO3 substrates using metal-organic deposition. Journal of Applied Physics, 2005, 98, 013507.	2.5	35
74	Two-dimensional large-size Y Ba2Cu3O7films (30 × 10 cm2) on CeO2-buffered sapphire by a coating pyrolysis process. Superconductor Science and Technology, 2004, 17, 354-357.	3.5	9
75	Large Temperature Coefficient of Resistance in La0.7Ca0.3MnO3Thin Films Obtained by Metal Organic Deposition Process. Japanese Journal of Applied Physics, 2004, 43, L1054-L1056.	1.5	13
76	Low-temperature growth of SnO2 film prepared by XeCl excimer laser MOD process. Applied Physics A: Materials Science and Processing, 2004, 79, 1541-1544.	2.3	11
77	Low temperature growth of epitaxial complex oxide films by an excimer laser MOD process. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 109, 131-135.	3.5	15
78	Preparation of high-Jc large-size YBCO films (30×10 cm2) by coating-pyrolysis process on CeO2-buffered sapphire. Physica C: Superconductivity and Its Applications, 2004, 412-414, 896-899.	1.2	43
79	Cerium oxide (CeO2) buffer layers for preparation of high-Jc YBCO films on large-area sapphire substrates (30 cm×10 cm) by coating pyrolysis. Physica C: Superconductivity and Its Applications, 2004, 412-414, 1326-1330.	1.2	16
80	Low-temperature growth of La0.8Sr0.2MnO3 thin films on LaAlO3 and SrTiO3 substrates by an excimer laser metal organic deposition (ELMOD) process. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 166, 123-128.	3.9	16
81	Preparation of YBCO films on CeO2-buffered MgO substrates by coating pyrolysis. Physica C: Superconductivity and Its Applications, 2003, 392-396, 1256-1260.	1.2	9
82	Transport critical current measurement of Y–Ba–Cu–O thin film fabricated by coating pyrolysis process. Physica C: Superconductivity and Its Applications, 2003, 392-396, 932-936.	1.2	6
83	2-D large-size YBCO films on sapphire for FCL prepared by coating-pyrolysis process. Physica C: Superconductivity and Its Applications, 2003, 392-396, 937-940.	1.2	15
84	Preparation of (001)- and (114)-oriented epitaxial thin films of Bi2VO5.5 by a coating pyrolysis process. Thin Solid Films, 2003, 425, 97-102.	1.8	6
85	Low temperature fabrication of epitaxial Yb123 films by coating-pyrolysis process. Physica C: Superconductivity and Its Applications, 2003, 392-396, 1281-1285.	1.2	0
86	Low Temperature Growth of Epitaxial La0.8Sr0.2MnO3Thin Films by an Excimer-Laser-Assisted Coating Pyrolysis Process. Japanese Journal of Applied Physics, 2003, 42, L956-L959.	1.5	37
87	Preparation and crystal structure of BaTiO3 thin film on LaAlO3 substrates by a coating-pyrolysis process. Materials Letters, 2002, 52, 169-172.	2.6	7
88	Preparation of (111)-Oriented Epitaxial Fe3â^'xO4 Films on α-Al2O3 (0001) Substrates by Coating-Pyrolysis Process Using Postepitaxial Topotaxy via (0001)-Oriented α-Fe2O3. Journal of Solid State Chemistry, 2002, 163, 239-247.	2.9	15
89	Preparation of YBa2Cu3O7â~'x/EuAlO3 multilayer films on α-Al2O3 substrates by all-coating-pyrolysis process. Physica C: Superconductivity and Its Applications, 2002, 382, 269-275.	1.2	2
90	Preparation of YBa2Cu3O7â^'y films by coating pyrolysis using a novel fluorine-contained complex solution. Physica C: Superconductivity and Its Applications, 2002, 378-381, 1017-1023.	1.2	1

Τακαακι Μαναβε

#	Article	IF	CITATIONS
91	Preparation of Y123 films on REAIO3-buffered off-cut substrates of R-plane sapphire. Physica C: Superconductivity and Its Applications, 2002, 378-381, 1227-1231.	1.2	1
92	Characterization of 50-mm-diameter Y123 films prepared by a coating-pyrolysis process using an infrared image furnace. Physica C: Superconductivity and Its Applications, 2002, 378-381, 1236-1240.	1.2	13
93	Effect of substrates on epitaxial PZT films by a coating photolysis process. Materials Science in Semiconductor Processing, 2002, 5, 207-210.	4.0	32
94	Low temperature growth of metal oxide thin films by metallorganic laser photolysis. Applied Surface Science, 2002, 186, 173-178.	6.1	57
95	Preparation of epitaxial Pb(Zr,Ti)O3 thin films using coating photolysis process. Applied Surface Science, 2002, 197-198, 398-401.	6.1	10
96	Characterization of tin-doped indium oxide films prepared by coating photolysis process. Applied Surface Science, 2002, 197-198, 512-515.	6.1	15
97	Characterization of epitaxial thin films of Bi2VO5.5 on La-doped SrTiO3 substrates prepared by coating-pyrolysis process. Thin Solid Films, 2002, 422, 73-79.	1.8	5
98	Effect of surface treatment of substrates on epitaxial α-Fe2O3 films by coating-pyrolysis process. Thin Solid Films, 2001, 391, 157-161.	1.8	2
99	Preparation of 2-inch-diameter double-sided YBa2Cu3O7 films by coating-pyrolysis process. Physica C: Superconductivity and Its Applications, 2001, 357-360, 1346-1349.	1.2	22
100	Synthesis and Surface Acoustic Wave Property of Aluminum Nitride Thin Films Fabricated on Silicon and Diamond Substrates Using the Sputtering Method. Japanese Journal of Applied Physics, 2001, 40, 5065-5068.	1.5	23
101	Preparation of Epitaxial YBa2Cu3O7-y/CeO2Multilayer Films on Yttria-stabilized Zirconia (100) by All-Coating-Pyrolysis Process. Japanese Journal of Applied Physics, 2001, 40, 4866-4869.	1.5	4
102	Effects of temperature and atmosphere on the epitaxial growth of hematite (α–Fe2O3) films on the R-, A- and C-planes of sapphire (α–Al2O3) by coating-pyrolysis process. Thin Solid Films, 2000, 365, 36-42.	1.8	8
103	Preparation of epitaxial V2O3 films on C-, A- and R-planes of α-Al2O3 substrates by coating-pyrolysis process. Thin Solid Films, 2000, 366, 294-301.	1.8	31
104	Ferroelectric Properties of (001)- and (106)-Oriented SrBi2Ta2O9 Epitaxial Thin Films. Journal of Sol-Gel Science and Technology, 2000, 19, 549-552.	2.4	5
105	Title is missing!. Journal of Sol-Gel Science and Technology, 2000, 19, 753-757.	2.4	3
106	Preparation of PbTiO3 Thin Films Using a Coating Photolysis Process with ArF Excimer Laser. Japanese Journal of Applied Physics, 2000, 39, L866-L868.	1.5	27
107	Variation of orientation and morphology of epitaxial SrBi ₂ Ta ₂ O ₉ and SrBi ₂ Nb ₂ O ₉ thin films via the coating-pyrolysis process. Journal of Materials Research, 2000, 15, 783-792.	2.6	9

Preparation of YBCO Films by CP-Process for HTS Microwave Filters. , 2000, , 927-929.

3

Τακαακί Μαναβέ

#	Article	IF	CITATIONS
109	X-Ray Diffraction Studies of Epitaxial La0.5Sr0.5CoO3Thin Films Prepared by the Dipping-Pyrolysis Process. Japanese Journal of Applied Physics, 1999, 38, 6489-6490.	1.5	5
110	Direct Conversion of Titanium Alkoxide into Crystallized TiO2 (rutile) Using Coating Photolysis Process with ArF Excimer Laser. Japanese Journal of Applied Physics, 1999, 38, L823-L825.	1.5	43
111	Epitaxial Growth of Bi4Ti3O12Thin Films on LaAlO3(012) and MgO(100) by Dipping-Pyrolysis Process. Japanese Journal of Applied Physics, 1999, 38, 219-220.	1.5	8
112	Preparation of epitaxial SrBi ₂ Nb ₂ O ₉ and SrBi ₂ Ta ₂ O ₉ thin films by the coating-pyrolysis process. Journal of Materials Research, 1999, 14, 3090-3095.	2.6	11
113	Direct Conversion of Metal Acetylacetonates and Metal Organic Acid Salts into Metal Oxides Thin Films Using Coating Photolysis Process with An ArF Excimer Laser. Japanese Journal of Applied Physics, 1999, 38, L1112-L1114.	1.5	34
114	Dense and smooth epitaxial BaTiO3 thin films by the dipping-pyrolysis process. Journal of Materials Research, 1999, 14, 592-596.	2.6	12
115	Epitaxy of (106)-oriented SrBi2Ta2O9 and SrBi2Nb2O9 thin films. Thin Solid Films, 1999, 353, 52-55.	1.8	16
116	Effect of substrate material on the crystallinity and epitaxy of Pb(Zr,Ti)O3 thin films. Thin Solid Films, 1999, 347, 106-111.	1.8	43
117	Sr-substitution limit at 760–800°C in epitaxial Yb(Ba1â^'xSrx)2Cu4O8 films prepared by coating–pyrolysis process. Physica C: Superconductivity and Its Applications, 1999, 313, 313-318.	1.2	4
118	Topotaxy of Corundumâ€Type Tetramagnesium Diniobate and Ditantalate Layers on Rockâ€Saltâ€Type Magnesium Oxide Substrates. Journal of the American Ceramic Society, 1999, 82, 2061-2065.	3.8	9
119	Effects of substrate materials and annealing temperature on crystal structure and epitaxy of La0.7Sr0.3MnO3 films via dipping-pyrolysis process. Thin Solid Films, 1998, 323, 99-104.	1.8	17
120	Solid-state epitaxy of c-axis-oriented Yb124 films prepared by coating-pyrolysis process. Physica C: Superconductivity and Its Applications, 1998, 303, 53-56.	1.2	13
121	Preparation of epitaxial Fe3â^'xO4 films by dipping-pyrolysis process using COâ^'CO2 gas mixtures. Journal of Materials Research, 1998, 13, 935-938.	2.6	8
122	Effect of Prefiring Conditions on Crystallization of Y123 Films by Dipping-Pyrolysis Process. , 1998, , 669-672.		0
123	Preparation of epitaxial La1â^xSrxMnO3 films on SrTiO3(001) by dipping-pyrolysis process. Journal of Materials Research, 1997, 12, 541-545.	2.6	38
124	Preparation of EpitaxialPb(Zr,Ti)O3Thin Films on Nb-DopedSrTiO3(100) Substrates by Dipping-Pyrolysis Process. Japanese Journal of Applied Physics, 1997, 36, 5221-5225.	1.5	37
125	Preparation of Epitaxial BaTiO3 Thin Films by the Dipping-pyrolysis Process. Journal of Materials Research, 1997, 12, 1141-1144.	2.6	12
126	Preparation of Epitaxial Pb(Zr, Ti)O ₃ Thin Films on MgO (100) Substrates by Dipping-Pyrolysis Process. Journal of the Ceramic Society of Japan, 1997, 105, 952-956.	1.3	18

Τακαακι Μαναβε

#	Article	IF	CITATIONS
127	Epitaxial growth of titanium oxide thin films on MgO(100) single-crystal substrates by reactive deposition methods. Thin Solid Films, 1997, 310, 184-193.	1.8	13
128	Effects of p(O2) and p(CO2) on epitaxial growth of BaTiO3 thin films on MgO(100) substrates by using metal organic acid salts. Thin Solid Films, 1997, 310, 199-202.	1.8	6
129	Carbon dioxide controlled annealing method for preparation of YBa2Cu3O7â^'y films by dipping-pyrolysis process. Physica C: Superconductivity and Its Applications, 1997, 276, 160-166.	1.2	5
130	Effect of p(CO2) on Growth of YBCO Phase in Dipping-Pyrolysis Process. , 1997, , 797-800.		0
131	Characterization of Epitaxial YBCO Films on SrTiO3(001) Prepared by Dipping-Pyrolysis Process. , 1995, , 625-628.		3
132	Processing of Superconducting Films and Tapes by Dipping-Pyrolysis Process. , 1995, , 589-594.		1
133	Crystallization of YBa ₂ Cu ₃ O _{7-y} films on SrTiO ₃ (100) by postannealing of precursors prepared by dipping-pyrolysis process. Journal of Materials Research, 1994, 9, 858-865.	2.6	47
134	Critical Current Densities of YBCO-Ag Films Prepared by Dipping Pyrolysis Process. , 1994, , 885-888.		2
135	In-plane aligned Ba2YCu3O7â^'y films prepared by dipping-pyrolysis process. , 1994, , 991-994.		0
136	Preparation and Superconducting Properties of Bi-Pb-Sr-Ca-Cu-O Films (Tc=106 K) by the Dipping-Pyrolysis Process. Japanese Journal of Applied Physics, 1992, 31, 1020-1025.	1.5	15
137	Preparation of highJcBa2YCu3O7â^'yâ€Ag composite films on SrTiO3(100) substrates by the dippingâ€pyrolysis process. Applied Physics Letters, 1992, 61, 988-990.	3.3	35
138	Preparation of superconducting Ba2YCu3O7â^'yâ€Ag composite films on sapphire by the dipping pyrolysis process. Applied Physics Letters, 1992, 60, 3301-3303.	3.3	9
139	Preparation of YBa2Cu3O7â^'y films on SrTiO3 and MgO by the dipping-pyrolysis process under low-p(O2) heat treatment. Journal of Materials Research, 1992, 7, 2337-2342.	2.6	14
140	Preparation of [110] oriented Ba2YCu3O7â^'y-Ag films on SrTiO3 (110) by the dipping-pyrolysis process. Physica C: Superconductivity and Its Applications, 1992, 201, 103-108.	1.2	8
141	Preparation of Superconducting Ba2YCu3O7-y/Ag Composite Films by the Dipping-Pyrolysis Process Using Metal Naphthenates at 750ŰC. Japanese Journal of Applied Physics, 1991, 30, L1268-L1270.	1.5	8
142	Preparation of High-JcBa2YCu3O7-yFilms on SrTiO3(100) Substrates by the Dipping-Pyrolysis Process at 750ŰC. Japanese Journal of Applied Physics, 1991, 30, L1641-L1643.	1.5	29
143	Effects of Annealing Conditions and Substrate Materials on the Superconducting Properties of Ba2YCu3O7-yFilms Prepared by the Dipping-Pyrolysis Process at 750°C. Japanese Journal of Applied Physics, 1991, 30, L1000-L1002.	1.5	18
144	Preparation of Superconducting Ba2YCu3O7-yFilms by the Dipping-Pyrolysis Process at 700° and 750°C. Japanese Journal of Applied Physics, 1991, 30, L28-L31.	1.5	18

#	Article	IF	CITATIONS
145	Effects of Heat Treatment Conditions on the Critical Current Densities of Ba2YCu3O7-yFilms Prepared by the Dipping-Pyrolysis Process. Japanese Journal of Applied Physics, 1990, 29, L940-L942.	1.5	48