List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7413025/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spontaneous Carbon-Support-Induced Metal Deposition. ACS Omega, 2022, 7, 3158-3166.	3.5	5
2	Glycerol oxidation at Pd nanocatalysts obtained through spontaneous metal deposition on carbon substrates. Electrochimica Acta, 2022, 427, 140871.	5.2	6
3	PEDOT-supported Pd nanocatalysts – oxidation of formic acid. Electrochimica Acta, 2021, 374, 137931.	5.2	4
4	Electrochemically Obtained Polysulfonates Doped Poly(3,4-ethylenedioxythiophene) Films—Effects of the Dopant's Chain Flexibility and Molecular Weight Studied by Electrochemical, Microgravimetric and XPS Methods. Polymers, 2021, 13, 2438.	4.5	4
5	Carbon screen-printed electrodes for substrate-assisted electroless deposition of palladium. Journal of Electroanalytical Chemistry, 2021, 897, 115617.	3.8	5
6	Polysulfonate-doped polyanilines—oxidation of ascorbic acid and dopamine in neutral solution. Journal of Solid State Electrochemistry, 2020, 24, 3113-3123.	2.5	6
7	Theory of electrochemical nucleation and growth—revisited?. Journal of Solid State Electrochemistry, 2020, 24, 2183-2185.	2.5	11
8	Electrochemically-Obtained Polysulfonic-Acids Doped Polyaniline Films—A Comparative Study by Electrochemical, Microgravimetric and XPS Methods. Polymers, 2020, 12, 1050.	4.5	12
9	Poly(3,4-ethylenedioxythiophene)-modified electrodes for tryptophan voltammetric sensing. Journal of Electroanalytical Chemistry, 2019, 848, 113309.	3.8	13
10	Angular Dependence of Raman Spectra for Electroactive Polymer Films on a Platinum Electrode. Russian Journal of Electrochemistry, 2019, 55, 175-183.	0.9	7
11	Glycerol oxidation on Pd nanocatalysts obtained on PEDOT-coated graphite supports. Electrochimica Acta, 2019, 306, 643-650.	5.2	10
12	Graphite electrode-assisted electroless deposition of palladium in the absence and presence of poly(3,4-ethylenedioxythiophene) coatings. Synthetic Metals, 2019, 247, 18-25.	3.9	4
13	Electroanalytical determination of caffeic acid – Factors controlling the oxidation reaction in the case of PEDOT-modified electrodes. Electrochimica Acta, 2019, 293, 439-446.	5.2	17
14	Electroless deposition of palladium nanoparticles on poly(3,4-ethylene-dioxythiophene)—role of the electrode substrate. Journal of Solid State Electrochemistry, 2018, 22, 1901-1908.	2.5	6
15	Electroless deposition of silver on poly(3, 4-ethylenedioxythiophene): role of the organic ions used in the course of electrochemical synthesis. Chemical Papers, 2017, 71, 339-346.	2.2	6
16	High-density Pd nanoparticles distribution on PEDOT obtained through electroless metal deposition on pre-reduced polymer layers. Electrochimica Acta, 2017, 253, 128-133.	5.2	11
17	Pd-modified PEDOT layers obtained through electroless metal deposition—electrooxidation of glycerol. Journal of Solid State Electrochemistry, 2016, 20, 3015-3023.	2.5	8
18	Role of the doping ions for the electrocrystallization of silver on poly(3,4-ethylenedyoxythiophene)-modified electrodes. Electrochimica Acta, 2016, 217, 218-225.	5.2	3

#	Article	IF	CITATIONS
19	Conducting polymers in electrochemical sensing: factors influencing the electroanalytical signal. Analytical and Bioanalytical Chemistry, 2016, 408, 7231-7241.	3.7	35
20	An acoustic impedance study of PEDOT layers obtained in aqueous solution. Electrochimica Acta, 2016, 190, 285-293.	5.2	24
21	Role of the anionic dopant of poly(3,4-ethylenedioxythiophene) for the electroanalytical performance: electrooxidation of acetaminophen. Electrochimica Acta, 2015, 179, 343-349.	5.2	23
22	Temperature-treated polyaniline layers as support for Pd catalysts: electrooxidation of glycerol in alkaline medium. Journal of Solid State Electrochemistry, 2015, 19, 2811-2818.	2.5	7
23	Electrochemical polymerization of 3,4-ethylenedioxythiophene in the presence of dodecylsulfate and polysulfonic anions—An acoustic impedance study. Electrochimica Acta, 2014, 122, 21-27.	5.2	32
24	Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): electrochemical behaviour and conductive properties in neutral solutions. Chemical Papers, 2013, 67, .	2.2	13
25	Alexander Milchev—a tribute on the occasion of his 70th birthday. Journal of Solid State Electrochemistry, 2013, 17, 277-278.	2.5	0
26	Conductive Polymer-Based Materials for Medical Electroanalytic Applications. Modern Aspects of Electrochemistry, 2013, , 283-342.	0.2	5
27	Formation and electroanalytical performance of polyaniline–palladium nanocomposites obtained via Layer-by-Layer adsorption and electroless metal deposition. Electrochimica Acta, 2013, 90, 157-165.	5.2	10
28	TiO2/WO3 hybrid structures produced through a sacrificial polymer layer technique for pollutant photo- and photoelectrooxidation under ultraviolet and visible light illumination. Journal of Applied Electrochemistry, 2012, 42, 121-129.	2.9	22
29	Palladium-modified polysulfonic acid-doped polyaniline layers for hydrazine oxidation in neutral solutions. Journal of Electroanalytical Chemistry, 2011, 661, 186-191.	3.8	26
30	Silver particles-modified polysulfonic acid-doped polyaniline layers: electroless deposition of silver in slightly acidic and neutral solutions. Journal of Solid State Electrochemistry, 2011, 15, 2553-2561.	2.5	11
31	Microgravimetric study on the formation and redox behavior of poly(2-acrylamido-2-methyl-1-propanesulfonate)-doped thin polyaniline layers. Electrochimica Acta, 2011, 56, 4803-4811.	5.2	17
32	Au nanoparticle–polyaniline nanocomposite layers obtained through layer-by-layer adsorption for the simultaneous determination of dopamine and uric acid. Electrochimica Acta, 2011, 56, 3693-3699.	5.2	71
33	Electrochemistry of Electroactive Materials. Electrochimica Acta, 2011, 56, 3417-3418.	5.2	0
34	Voltammetric and conductometric behavior of nanocomposites of polyaniline and gold nanoparticles prepared by layer-by-layer technique. Journal of Solid State Electrochemistry, 2010, 14, 1261-1268.	2.5	16
35	Copper-modified poly(3,4-ethylenedioxythiophene) layers for selective determination of dopamine in the presence of ascorbic acid: I. Role of the polymer layer thickness. Journal of Solid State Electrochemistry, 2010, 14, 1947-1955.	2.5	19
36	Copper-modified poly(3,4-ethylenedioxythiophene) layers for selective determination of dopamine in the presence of ascorbic acid: II Role of the characteristics of the metal deposit. Journal of Solid State Electrochemistry, 2010, 14, 1957-1965.	2.5	13

#	Article	IF	CITATIONS
37	Electrocatalytically active nanocomposite from palladium nanoparticles and polyaniline: Oxidation of hydrazine. Sensors and Actuators B: Chemical, 2010, 150, 271-278.	7.8	89
38	Electroanalytical applications of nanocomposites from conducting polymers and metallic nanoparticles prepared by layer-by-layer deposition. Pure and Applied Chemistry, 2010, 83, 345-358.	1.9	14
39	Automated Layerâ€by‣ayer Deposition of Polyelectrolytes in Flow Mode. Macromolecular Materials and Engineering, 2009, 294, 441-444.	3.6	8
40	Comparative study on the electrochemical synthesis of polyaniline in the presence of mono- and poly(2-acrylamido-2-methyl-1-propanesulfonic) acid. Thin Solid Films, 2009, 517, 6681-6688.	1.8	20
41	Analytical Applications of Electrodes Modified by Gold Nanoparticles: Dopamine Detection. Journal of Nanoscience and Nanotechnology, 2009, 9, 2407-2412.	0.9	21
42	How to affect number, size, and location of metal particles deposited in conducting polymer layers. Journal of Solid State Electrochemistry, 2008, 12, 1421-1434.	2.5	90
43	Electroreduction of Nitrate at Copper Electrodes and Copper-PANI Composite Layers. Zeitschrift Fur Physikalische Chemie, 2007, 221, 1123-1136.	2.8	10
44	Electrochemical formation and properties of thin polyaniline films on Au(111) and p-Si(111). Applied Physics A: Materials Science and Processing, 2007, 87, 405-409.	2.3	12
45	Electrochemical synthesis and characterization of TiO2-polyaniline composite layers. Journal of Applied Electrochemistry, 2007, 38, 63-69.	2.9	25
46	Conductometric transducing in electrocatalytical sensors: Detection of ascorbic acid. Electrochemistry Communications, 2006, 8, 643-646.	4.7	33
47	Electrochemical formation of bi-metal (copper–palladium) electrocatalyst supported on poly-3,4-ethylenedioxythiophene. Electrochimica Acta, 2006, 52, 816-824.	5.2	33
48	Ascorbic Acid Oxidation at Nonmodified and Copper-Modified Polyaniline and Poly-ortho-methoxyaniline Coated Electrodes. Electroanalysis, 2006, 18, 807-813.	2.9	27
49	Gold Nanoparticles in Nonenzymatic Electrochemical Detection of Sugars. Electroanalysis, 2006, 18, 1937-1942.	2.9	124
50	Electrochemical formation and copper modification of poly-o-methoxyaniline. Thin Solid Films, 2005, 493, 88-95.	1.8	17
51	Copper electrocrystallization in PEDOT in presence and absence of copper–polymer-stabilized species. Electrochimica Acta, 2005, 50, 1669-1674.	5.2	18
52	Electroless versus electrodriven deposition of silver crystals in polyaniline. Electrochimica Acta, 2005, 50, 5616-5623.	5.2	37
53	Silver electrocrystallization at polyaniline-coated electrodes. Electrochimica Acta, 2004, 49, 913-921.	5.2	33
54	Copper modified poly(3,4-ethylenedioxythiophene). Synthetic Metals, 2004, 141, 287-292.	3.9	21

#	Article	IF	CITATIONS
55	Copper modified poly(3,4-ethylenedioxythiophene). Synthetic Metals, 2004, 141, 281-285.	3.9	18
56	Composition of the microemulsion and its influence on the polymerisation and redox activation of PEDOT. Journal of Electroanalytical Chemistry, 2003, 547, 125-133.	3.8	28
57	Title is missing!. Journal of Applied Electrochemistry, 2002, 32, 701-707.	2.9	40
58	Title is missing!. Journal of Applied Electrochemistry, 2002, 32, 709-715.	2.9	20
59	Electrosynthesis and analytical characterisation of polypyrrole thin films modified with copper nanoparticles. Journal of Materials Chemistry, 2001, 11, 1434-1440.	6.7	61
60	Role of polymer synthesis conditions for the copper electrodeposition in polyaniline. Electrochemistry Communications, 2001, 3, 312-316.	4.7	28
61	Anodic polymerization of 3,4-ethylenedioxythiophene from aqueous microemulsions. Electrochimica Acta, 2001, 46, 759-768.	5.2	70
62	Crystallization kinetics of Pd in composite films of PEDT. Journal of Electroanalytical Chemistry, 2001, 500, 574-583.	3.8	87
63	Electrochemical incorporation of copper in polyaniline layers. Electrochimica Acta, 2001, 46, 4213-4222.	5.2	54
64	Electrochemical deposition of copper in polyaniline films — number density and spatial distribution of deposited metal clusters. Electrochemistry Communications, 2000, 2, 511-515.	4.7	32
65	Electrochemical microsystem technologies: from fundamental research to technical systems. Electrochimica Acta, 1999, 44, 3605-3627.	5.2	61
66	Growth of polyaniline films under pulse potentiostatic conditions. Journal of Electroanalytical Chemistry, 1993, 346, 85-97.	3.8	59
67	Nucleation, growth and branching of polyaniline from microelectrode experiments. Electrochimica Acta, 1992, 37, 2255-2261.	5.2	152
68	Nucleation of silver on a polyaniline-coated platinum electrode. Electrochimica Acta, 1991, 36, 1151-1155.	5.2	28
69	Electrochemical formation and stability of polyaniline films. Electrochimica Acta, 1991, 36, 1579-1583.	5.2	64
70	Probabilistic aspects of mercury electrodeposition on a platinum single crystal cathode—II. Electrochimica Acta, 1990, 35, 339-343.	5.2	4
71	Theory of progressive nucleation and growth accounting for the ohmic drop in the electrolyte. I. Journal of Applied Electrochemistry, 1990, 20, 301-306.	2.9	11
72	Electrochemical nucleation of mercury on platinum in the presence of organic additives. Journal of Applied Electrochemistry, 1989, 19, 819-822.	2.9	7

#	Article	IF	CITATIONS
73	Effect of substrate transformations on the kinetics and thermodynamics of electrochemical phase formation. Electrochimica Acta, 1986, 31, 971-975.	5.2	17
74	Probabilistic aspects of mercury electro-deposition on a platinum single crystal cathode—I. Electrochimica Acta, 1985, 30, 133-142.	5.2	35