
## **Ren-Xiao Wang**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7412899/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Further development and validation of empirical scoring functions for structure-based binding affinity prediction. Journal of Computer-Aided Molecular Design, 2002, 16, 11-26.    | 2.9  | 1,012     |
| 2  | Computation of Octanolâ^'Water Partition Coefficients by Guiding an Additive Model with Knowledge.<br>Journal of Chemical Information and Modeling, 2007, 47, 2140-2148.           | 5.4  | 601       |
| 3  | Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization. Analytical Biochemistry, 2004, 332, 261-273.                             | 2.4  | 479       |
| 4  | Comparative Assessment of Scoring Functions on a Diverse Test Set. Journal of Chemical Information and Modeling, 2009, 49, 1079-1093.                                              | 5.4  | 444       |
| 5  | A New Atom-Additive Method for Calculating Partition Coefficients. Journal of Chemical Information and Computer Sciences, 1997, 37, 615-621.                                       | 2.8  | 399       |
| 6  | PDB-wide collection of binding data: current status of the PDBbind database. Bioinformatics, 2015, 31, 405-412.                                                                    | 4.1  | 375       |
| 7  | Comparative Assessment of Scoring Functions: The CASF-2016 Update. Journal of Chemical Information and Modeling, 2019, 59, 895-913.                                                | 5.4  | 367       |
| 8  | Comparative Assessment of Scoring Functions on an Updated Benchmark: 2. Evaluation Methods and General Results. Journal of Chemical Information and Modeling, 2014, 54, 1717-1736. | 5.4  | 294       |
| 9  | Evaluation of the performance of four molecular docking programs on a diverse set of proteinâ€ligand complexes. Journal of Computational Chemistry, 2010, 31, 2109-2125.           | 3.3  | 277       |
| 10 | CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nature Communications, 2017, 8, 15179.                                                                          | 12.8 | 276       |
| 11 | SCORE: A New Empirical Method for Estimating the Binding Affinity of a Protein-Ligand Complex.<br>Journal of Molecular Modeling, 1998, 4, 379-394.                                 | 1.8  | 275       |
| 12 | Forging the Basis for Developing Protein–Ligand Interaction Scoring Functions. Accounts of<br>Chemical Research, 2017, 50, 302-309.                                                | 15.6 | 257       |
| 13 | LigBuilder: A Multi-Purpose Program for Structure-Based Drug Design. Journal of Molecular<br>Modeling, 2000, 6, 498-516.                                                           | 1.8  | 249       |
| 14 | Classification of Current Scoring Functions. Journal of Chemical Information and Modeling, 2015, 55, 475-482.                                                                      | 5.4  | 218       |
| 15 | Comparative Assessment of Scoring Functions on an Updated Benchmark: 1. Compilation of the Test<br>Set. Journal of Chemical Information and Modeling, 2014, 54, 1700-1716.         | 5.4  | 175       |
| 16 | Calculating partition coefficient by atom-additive method. Journal of Computer - Aided Molecular<br>Design, 2000, 19, 47-66.                                                       | 1.0  | 172       |
| 17 | Systematic Derivation of AMBER Force Field Parameters Applicable to Zinc-Containing Systems. Journal of Chemical Theory and Computation, 2010, 6, 1852-1870.                       | 5.3  | 100       |
| 18 | Current Experimental Methods for Characterizing Protein–Protein Interactions. ChemMedChem, 2016,<br>11. 738-756.                                                                   | 3.2  | 82        |

| #  | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Assessing protein–ligand interaction scoring functions with the CASF-2013 benchmark. Nature<br>Protocols, 2018, 13, 666-680.                                                                                                                        | 12.0 | 79        |
| 20 | AlloFinder: a strategy for allosteric modulator discovery and allosterome analyses. Nucleic Acids<br>Research, 2018, 46, W451-W458.                                                                                                                 | 14.5 | 79        |
| 21 | The phytochemical hyperforin triggers thermogenesis in adipose tissue via a Dlat-AMPK signaling axis to curb obesity. Cell Metabolism, 2021, 33, 565-580.e7.                                                                                        | 16.2 | 79        |
| 22 | A computational analysis of the binding affinities of FKBP12 inhibitors using the MM-PB/SA method.<br>Proteins: Structure, Function and Bioinformatics, 2006, 64, 1058-1068.                                                                        | 2.6  | 71        |
| 23 | Top <i>P</i> – <i>S</i> : Persistent homologyâ€based multiâ€task deep neural networks for simultaneous<br>predictions of partition coefficient and aqueous solubility. Journal of Computational Chemistry, 2018,<br>39, 1444-1454.                  | 3.3  | 71        |
| 24 | All-Orientation Search and All-Placement Search in Comparative Molecular Field Analysis. Journal of<br>Molecular Modeling, 1998, 4, 276-283.                                                                                                        | 1.8  | 67        |
| 25 | Mechanistic basis for receptor-mediated pathological α-synuclein fibril cell-to-cell transmission in<br>Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America,<br>2021, 118, .                       | 7.1  | 59        |
| 26 | Tapping on the Black Box: How Is the Scoring Power of a Machine-Learning Scoring Function<br>Dependent on the Training Set?. Journal of Chemical Information and Modeling, 2020, 60, 1122-1136.                                                     | 5.4  | 56        |
| 27 | The domain responsible for sphingomyelin synthase (SMS) activity. Biochimica Et Biophysica Acta -<br>Molecular and Cell Biology of Lipids, 2008, 1781, 610-617.                                                                                     | 2.4  | 53        |
| 28 | Hemolytic mechanism of dioscin proposed by molecular dynamics simulations. Journal of Molecular<br>Modeling, 2010, 16, 107-118.                                                                                                                     | 1.8  | 52        |
| 29 | Targeting the potent Beclin 1–UVRAG coiled-coil interaction with designed peptides enhances<br>autophagy and endolysosomal trafficking. Proceedings of the National Academy of Sciences of the<br>United States of America, 2018, 115, E5669-E5678. | 7.1  | 45        |
| 30 | Molecular modeling of the three-dimensional structure of GLP-1R and its interactions with several agonists. Journal of Molecular Modeling, 2009, 15, 53-65.                                                                                         | 1.8  | 44        |
| 31 | Discovery and Development of Thiazolo[3,2â€ <i>a</i> ]pyrimidinone Derivatives as General Inhibitors of<br>Bclâ€2 Family Proteins. ChemMedChem, 2011, 6, 904-921.                                                                                   | 3.2  | 44        |
| 32 | RASSE:  A New Method for Structure-Based Drug Design. Journal of Chemical Information and<br>Computer Sciences, 1996, 36, 1187-1194.                                                                                                                | 2.8  | 39        |
| 33 | Calculating Partition Coefficients of Peptides by the Addition Method. Journal of Molecular<br>Modeling, 1999, 5, 189-195.                                                                                                                          | 1.8  | 38        |
| 34 | Automatic Perception of Organic Molecules Based on Essential Structural Information. Journal of<br>Chemical Information and Modeling, 2007, 47, 1379-1385.                                                                                          | 5.4  | 37        |
| 35 | Target-oriented design and biosynthesis of thiostrepton-derived thiopeptide antibiotics with improved pharmaceutical properties. Organic Chemistry Frontiers, 2015, 2, 106-109.                                                                     | 4.5  | 32        |
| 36 | Interpretation of the Binding Affinities of PTP1B Inhibitors with the MM-GB/SA Method and the X-Score<br>Scoring Function. Journal of Chemical Information and Modeling, 2009, 49, 1033-1048.                                                       | 5.4  | 31        |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Test MM-PB/SA on True Conformational Ensembles of Proteinâ^'Ligand Complexes. Journal of Chemical<br>Information and Modeling, 2010, 50, 1682-1692.                                                                            | 5.4 | 31        |
| 38 | Alloscore: a method for predicting allosteric ligand–protein interactions. Bioinformatics, 2016, 32,<br>1574-1576.                                                                                                             | 4.1 | 31        |
| 39 | New Trends in Virtual Screening. Journal of Chemical Information and Modeling, 2020, 60, 4109-4111.                                                                                                                            | 5.4 | 29        |
| 40 | Geometrical Preferences of the Hydrogen Bonds on Proteinâ^'Ligand Binding Interface Derived from<br>Statistical Surveys and Quantum Mechanics Calculations. Journal of Chemical Theory and<br>Computation, 2008, 4, 1959-1973. | 5.3 | 27        |
| 41 | Enantioselective Synthesis of (–)-Stemoamide. Synthesis, 2012, 44, 3432-3440.                                                                                                                                                  | 2.3 | 26        |
| 42 | Screening of Small-Molecule Inhibitors of Protein–Protein Interaction with Capillary<br>Electrophoresis Frontal Analysis. Analytical Chemistry, 2016, 88, 8050-8057.                                                           | 6.5 | 25        |
| 43 | The Role of Chronic Inflammation in Various Diseases and Antiâ€inflammatory Therapies Containing<br>Natural Products. ChemMedChem, 2021, 16, 1576-1592.                                                                        | 3.2 | 25        |
| 44 | AutoT&T v.2: An Efficient and Versatile Tool for Lead Structure Generation and Optimization.<br>Journal of Chemical Information and Modeling, 2016, 56, 435-453.                                                               | 5.4 | 24        |
| 45 | Identification of small molecule sphingomyelin synthase inhibitors. European Journal of Medicinal<br>Chemistry, 2014, 73, 1-7.                                                                                                 | 5.5 | 23        |
| 46 | Colchicine selective interaction with oncogene <i>RET</i> G-quadruplex revealed by NMR. Chemical Communications, 2020, 56, 2099-2102.                                                                                          | 4.1 | 23        |
| 47 | Smallâ€Molecule Regulators of Autophagy and Their Potential Therapeutic Applications. ChemMedChem, 2013, 8, 694-707.                                                                                                           | 3.2 | 22        |
| 48 | Editorial: Method and Data Sharing and Reproducibility of Scientific Results. Journal of Chemical<br>Information and Modeling, 2020, 60, 5868-5869.                                                                            | 5.4 | 22        |
| 49 | Prediction of the Favorable Hydration Sites in a Protein Binding Pocket and Its Application to Scoring Function Formulation. Journal of Chemical Information and Modeling, 2020, 60, 4359-4375.                                | 5.4 | 21        |
| 50 | Rational design of Tamiflu derivatives targeting at the open conformation of neuraminidase subtype 1.<br>Journal of Molecular Graphics and Modelling, 2009, 28, 203-219.                                                       | 2.4 | 19        |
| 51 | De Novo Design, Synthesis and Evaluation of Benzylpiperazine Derivatives as Highly Selective Binders of Mclâ€1. ChemMedChem, 2013, 8, 1986-2014.                                                                               | 3.2 | 19        |
| 52 | Synthesis and anti-tumor activities of<br>N′-benzylidene-2-(4-oxothieno[2,3-d]pyrimidin-3(4H)-yl)acetohydrazone derivatives. Bioorganic and<br>Medicinal Chemistry Letters, 2011, 21, 6662-6666.                               | 2.2 | 17        |
| 53 | Mutagenesis of Key Residues in the Binding Center of <scp>lâ€</scp> Aspartateâ€Î²â€6emialdehyde<br>Dehydrogenase from <i>Escherichia coli</i> Enhances Utilization of the Cofactor NAD(H).<br>ChemBioChem, 2016, 17, 56-64.    | 2.6 | 17        |
| 54 | 2-Aminoethoxydiphenylborane sensitizes anti-tumor effect of bortezomib via suppression of calcium-mediated autophagy. Cell Death and Disease, 2018, 9, 361.                                                                    | 6.3 | 16        |

| #  | Article                                                                                                                                                                                                                         | IF          | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 55 | Experimental Characterization of the Binding Affinities between Proapoptotic BH3 Peptides and Antiapoptotic Bclâ€2 Proteins. ChemMedChem, 2018, 13, 1763-1770.                                                                  | 3.2         | 16        |
| 56 | Characterization of the Stereochemical Structures of 2 <i>H</i> â€Thiazolo[3,2â€ <i>a</i> ]pyrimidine<br>Compounds and Their Binding Affinities for Antiâ€apoptotic Bclâ€2 Family Proteins. ChemMedChem, 2013, 8,<br>1345-1352. | 3.2         | 14        |
| 57 | Enhance the performance of current scoring functions with the aid of 3D protein-ligand interaction fingerprints. BMC Bioinformatics, 2017, 18, 343.                                                                             | 2.6         | 14        |
| 58 | Optimization of Beclin 1-Targeting Stapled Peptides by Staple Scanning Leads to Enhanced<br>Antiproliferative Potency in Cancer Cells. Journal of Medicinal Chemistry, 2021, 64, 13475-13486.                                   | 6.4         | 13        |
| 59 | Structure-based Mechanistic Insights into Terminal Amide Synthase in Nosiheptide-Represented<br>Thiopeptides Biosynthesis. Scientific Reports, 2015, 5, 12744.                                                                  | 3.3         | 12        |
| 60 | Discovery, synthesis and biological evaluation of 2-(4-(N-phenethylsulfamoyl)phenoxy)acetamides<br>(SAPAs) as novel sphingomyelin synthase 1 inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23,<br>6173-6184.            | 3.0         | 12        |
| 61 | Proposed Hydrogen-Bonding Index of Donor or Acceptor Reflecting Its Intrinsic Contribution to<br>Hydrogen-Bonding Strength. Journal of Chemical Information and Modeling, 2017, 57, 1535-1547.                                  | 5.4         | 12        |
| 62 | Development of 3â€Phenylâ€ <i>N</i> â€(2â€(3â€phenylureido)ethyl)â€thiopheneâ€2â€sulfonamide Compounds<br>Inhibitors of Antiapoptotic Bclâ€2 Family Proteins. ChemMedChem, 2014, 9, 1436-1452.                                  | s as<br>3.2 | 11        |
| 63 | Revisiting the Relationship Between Correlation Coefficient, Confidence Level, and Sample Size.<br>Journal of Chemical Information and Modeling, 2019, 59, 4602-4612.                                                           | 5.4         | 11        |
| 64 | Fragment-Based Computational Method for Designing GPCR Ligands. Journal of Chemical Information and Modeling, 2020, 60, 4339-4349.                                                                                              | 5.4         | 11        |
| 65 | Molecular Modeling of the Threeâ€Dimensional Structure of Human Sphingomyelin Synthase. Chinese<br>Journal of Chemistry, 2011, 29, 1567-1575.                                                                                   | 4.9         | 10        |
| 66 | Crossâ€Mapping of Protein – Ligand Binding Data Between ChEMBL and PDBbind. Molecular Informatics,<br>2015, 34, 568-576.                                                                                                        | 2.5         | 9         |
| 67 | An unusual UMP C-5 methylase in nucleoside antibiotic polyoxin biosynthesis. Protein and Cell, 2016, 7, 673-683.                                                                                                                | 11.0        | 9         |
| 68 | Development of a new benchmark for assessing the scoring functions applicable to protein–protein interactions. Future Medicinal Chemistry, 2018, 10, 1555-1574.                                                                 | 2.3         | 9         |
| 69 | New Trends in Virtual Screening. Journal of Chemical Information and Modeling, 2019, 59, 3603-3604.                                                                                                                             | 5.4         | 9         |
| 70 | Probing the Key Interactions between Human Atg5 and Atg16 Proteins: A Prospective Application of Molecular Modeling. ChemMedChem, 2013, 8, 1270-1275.                                                                           | 3.2         | 8         |
| 71 | Synthesis and anti-tumor activities of methyl 2-O-aryl-6-O-aryl′-d-glucopyranosides. Bioorganic and<br>Medicinal Chemistry Letters, 2010, 20, 2855-2858.                                                                        | 2.2         | 7         |
| 72 | <scp>NMR</scp> Studies on the Interaction between Oncogene <scp><i>RET</i> Gâ€Quadruplex</scp><br>and Berberine <sup>â€</sup> . Chinese Journal of Chemistry, 2020, 38, 1656-1662.                                              | 4.9         | 7         |

| #  | Article                                                                                                                                                                                                                                          | IF              | CITATIONS  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|
| 73 | Revealing the Unbinding Kinetics and Mechanism of Type I and Type II Protein Kinase Inhibitors by<br>Local-Scaled Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2020, 16,<br>6620-6632.                            | 5.3             | 7          |
| 74 | Analysis of the Binding Sites on BAX and the Mechanism of BAX Activators through Extensive<br>Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2022, 62, 5208-5222.                                                 | 5.4             | 7          |
| 75 | Public Data Set of Protein–Ligand Dissociation Kinetic Constants for Quantitative Structure–Kinetics<br>Relationship Studies. ACS Omega, 2022, 7, 18985-18996.                                                                                   | 3.5             | 7          |
| 76 | Automatic Identification of Antibodies in the Protein Data Bank. Chinese Journal of Chemistry, 2009, 27, 23-28.                                                                                                                                  | 4.9             | 6          |
| 77 | Rise of the Selective Inhibitors of Antiâ€Apoptotic Bclâ€2 Family Proteins. ChemMedChem, 2013, 8, 1437-1440.                                                                                                                                     | 3.2             | 6          |
| 78 | Synthesis of (1,3,4-thiadiazol-2-yl)-acrylamide derivatives as potential antitumor agents against acute<br>leukemia cells. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127114.                                                         | 2.2             | 6          |
| 79 | Structure-Based Optimization of 3-Phenyl- <i>N</i> -(2-(3-phenylureido)ethyl)thiophene-2-sulfonamide<br>Derivatives as Selective Mcl-1 Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 10260-10285.                                        | 6.4             | 6          |
| 80 | A Statistical Survey on the Binding Constants of Covalently Bound Protein–Ligand Complexes.<br>Molecular Informatics, 2010, 29, 87-96.                                                                                                           | 2.5             | 4          |
| 81 | I-SOLV: A new surface-based empirical model for computing solvation free energies. Journal of<br>Molecular Graphics and Modelling, 2007, 26, 368-377.                                                                                            | 2.4             | 3          |
| 82 | Theoretical Analysis of Fas Ligandâ€Induced Apoptosis with an Ordinary Differential Equation Model.<br>Molecular Informatics, 2012, 31, 793-807.                                                                                                 | 2.5             | 2          |
| 83 | Temperatureâ€Responsive Chiral (A) <sub>6</sub> B Supramolecular Cages Based on Conformational<br>Preferences. Chemistry - an Asian Journal, 2016, 11, 465-469.                                                                                  | 3.3             | 2          |
| 84 | 11â€Azaâ€artemisinin Derivatives Exhibit Anticancer Activities by Targeting the Fatty Acid Binding Protein 6<br>(FABP6). Chinese Journal of Chemistry, 2018, 36, 1197-1201.                                                                      | 4.9             | 2          |
| 85 | Experimental Methods Used for Identifying Small-Molecule Inhibitors of Protein-Protein Interaction. , 2018, , 95-133.                                                                                                                            |                 | 2          |
| 86 | Computational Chemistry in Asia. Journal of Chemical Information and Modeling, 2021, 61, 547-547.                                                                                                                                                | 5.4             | 2          |
| 87 | Synthesis of 4â€(2â€Phenylhydrazono)â€1â€(4â€phenylthiazolâ€2â€yl)â€1 <i>H</i> â€pyrazolâ€5(4 <i>H</i> )â€and Characterization of Their Affinities to Antiâ€apoptotic Bclâ€2 Family Proteins. Chinese Journal of Chemistry, 2013, 31, 1133-1138. | one Comp<br>4.9 | ounds<br>1 |
| 88 | Special Issue of "Medicinal Chemistry". Chinese Journal of Chemistry, 2013, 31, 1115-1115.                                                                                                                                                       | 4.9             | 0          |
| 89 | Small-Molecule Regulators of Autophagy as Potential Anti-cancer Therapy. Current Cancer Research, 2016, , 39-57.                                                                                                                                 | 0.2             | 0          |