

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7412846/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Advances in Organocatalytic Asymmetric Morita–Baylis–Hillman/aza-Morita–Baylis–Hillman Reactions. Chemical Reviews, 2013, 113, 6659-6690.	47.7	635
2	Multifunctional Chiral Phosphine Organocatalysts in Catalytic Asymmetric Moritaâ^'Baylisâ^'Hillman and Related Reactions. Accounts of Chemical Research, 2010, 43, 1005-1018.	15.6	516
3	Recent developments of cyclopropene chemistry. Chemical Society Reviews, 2011, 40, 5534.	38.1	286
4	Development of asymmetric phosphine-promoted annulations of allenes with electron-deficient olefins and imines. Chemical Communications, 2012, 48, 1724-1732.	4.1	285
5	Rapid Generation of Molecular Complexity in the Lewis or BrÃ,nsted Acid-Mediated Reactions of Methylenecyclopropanes. Accounts of Chemical Research, 2012, 45, 641-652.	15.6	213
6	Chemistry of Vinylidenecyclopropanes. Chemical Reviews, 2010, 110, 5883-5913.	47.7	177
7	Recent extensions of the Morita–Baylis–Hillman reaction. Chemical Communications, 2009, , 5496.	4.1	172
8	Applications of Chiral Phosphineâ€Based Organocatalysts in Catalytic Asymmetric Reactions. Chemistry - an Asian Journal, 2014, 9, 2720-2734.	3.3	170
9	Divergent Synthesis of Carbo- and Heterocycles via Gold-Catalyzed Reactions. ACS Catalysis, 2016, 6, 2515-2524.	11.2	157
10	Lu's [3 + 2] cycloaddition of allenes with electrophiles: discovery, development and synthetic application. Organic Chemistry Frontiers, 2017, 4, 1876-1890.	4.5	155
11	Highly Regio- and Diastereoselective Construction of Spirocyclopenteneoxindoles through Phosphine-Catalyzed [3 + 2] Annulation of Morita–Baylis–Hillman Carbonates with Isatylidene Malononitriles. Organic Letters, 2011, 13, 3348-3351.	4.6	146
12	Phosphine- and Nitrogen-Containing Lewis Base Catalyzed Highly Regioselective and Geometric Selective Cyclization of Isatin Derived Electron-Deficient Alkenes with Ethyl 2,3-Butadienoate. Organic Letters, 2011, 13, 1142-1145.	4.6	123
13	Catalyst-Dependent Stereodivergent and Regioselective Synthesis of Indole-Fused Heterocycles through Formal Cycloadditions of Indolyl-Allenes. Journal of the American Chemical Society, 2015, 137, 8131-8137.	13.7	109
14	Phosphine-catalyzed highly diastereoselective [3+2] cyclization of isatin derived electron-deficient alkenes with α-allenic esters. Chemical Communications, 2011, 47, 1548-1550.	4.1	108
15	Asymmetric [3+2] annulation of allenes with maleimides catalyzed by dipeptide-derived phosphines: facile creation of functionalized bicyclic cyclopentenes containing two tertiary stereogenic centers. Chemical Communications, 2012, 48, 970-972.	4.1	108
16	Structure-based investigation on the binding interaction of hydroxylated polybrominated diphenyl ethers with thyroxine transport proteins. Toxicology, 2010, 277, 20-28.	4.2	101
17	Phosphine-catalyzed asymmetric [4+1] annulation of Morita–Baylis–Hillman carbonates with dicyano-2-methylenebut-3-enoates. Chemical Communications, 2012, 48, 8664.	4.1	101
18	Asymmetric catalytic aza-Morita–Baylis–Hillman reaction for the synthesis of 3-substituted-3-aminooxindoles with chiral quaternary carbon centers. Organic and Biomolecular Chemistry, 2013, 11, 1921.	2.8	97

#	Article	IF	CITATIONS
19	Phosphine-catalyzed asymmetric [4+1] annulation of activated α,β-unsaturated ketones with Morita–Baylis–Hillman carbonates: enantioselective synthesis of spirooxindoles containing two adjacent quaternary stereocenters. Chemical Communications, 2014, 50, 8912.	4.1	93
20	Construction of adjacent spiro-quaternary and tertiary stereocenters through phosphine-catalyzed asymmetric [3+2] annulation of allenoates with alkylidene azlactones. Chemical Communications, 2012, 48, 2764.	4.1	90
21	A Phosphineâ€Catalyzed Novel Asymmetric [3+2] Cycloaddition of C,Nâ€Cyclic Azomethine Imines with δâ€Substituted Allenoates. Chemistry - A European Journal, 2014, 20, 15325-15329.	3.3	87
22	Palladium-Catalyzed Asymmetric Formal [3+2] Cycloaddition of Vinyl Cyclopropanes and β,γ-Unsaturated α-Keto Esters: An Effective Route to Highly Functionalized Cyclopentanes. Organometallics, 2012, 31, 7591-7599.	2.3	85
23	Diastereo- and Enantioselective Construction of Oxindole-Fused Spirotetrahydrofuran Scaffolds through Palladium-Catalyzed Asymmetric [3+2] Cycloaddition of Vinyl Cyclopropanes and Isatins. Organometallics, 2013, 32, 3544-3556.	2.3	85
24	Enantioselective Synthesis of Highly Functionalized Phosphonateâ€Substituted Pyrans or Dihydropyrans Through Asymmetric [4+2] Cycloaddition of β,γâ€Unsaturated αâ€Ketophosphonates with Allenic Esters. Angewandte Chemie - International Edition, 2012, 51, 11328-11332.	13.8	83
25	Theoretical Prediction of Selectivity in Kinetic Resolution of Secondary Alcohols Catalyzed by Chiral DMAP Derivatives. Journal of the American Chemical Society, 2012, 134, 9390-9399.	13.7	80
26	Enantioselective Synthesis of Highly Functionalized Trifluoromethylâ€Bearing Cyclopentenes: Asymmetric [3+2] Annulation of Morita–Baylis–Hillman Carbonates with Trifluoroethylidenemalonates Catalyzed by Multifunctional Thioureaâ€Phosphines. Advanced Synthesis and Catalysis, 2012, 354, 783-789.	4.3	79
27	Chiral phosphine-catalyzed tunable cycloaddition reactions of allenoates with benzofuranone-derived olefins for a highly regio-, diastereo- and enantioselective synthesis of spiro-benzofuranones. Chemical Science, 2015, 6, 7319-7325.	7.4	79
28	Construction of Chiral Quaternary Carbon through Morita–Baylis–Hillman Reaction: An Enantioselective Approach to 3‣ubstituted 3â€Hydroxyoxindole Derivatives. Chemistry - A European Journal, 2010, 16, 13617-13621.	3.3	78
29	Chiral Bifunctional Thiourea–Phosphane Organocatalysts in Asymmetric Allylic Amination of Morita–Baylis–Hillman Acetates. European Journal of Organic Chemistry, 2011, 2011, 1956-1960.	2.4	77
30	Gold(I) atalyzed Cycloisomerization of 1,6â€Diynes: Synthesis of 2,3â€Disubstituted 3â€Pyrroline Derivatives. Angewandte Chemie - International Edition, 2011, 50, 2583-2587.	13.8	77
31	Methyl Cation Affinities of Commonly Used Organocatalysts. Journal of the American Chemical Society, 2008, 130, 3473-3477.	13.7	70
32	Phosphine-Catalyzed Tandem Reaction of Allenoates with Nitroalkenes. Organic Letters, 2010, 12, 5024-5027.	4.6	68
33	Palladium-Catalyzed Diastereoselective Formal [5 + 3] Cycloaddition for the Construction of Spirooxindoles Fused with an Eight-Membered Ring. Organic Letters, 2019, 21, 4859-4863.	4.6	68
34	Intramolecular annulation of aromatic rings with N-sulfonyl 1,2,3-triazoles: divergent synthesis of 3-methylene-2,3-dihydrobenzofurans and 3-methylene-2,3-dihydroindoles. Chemical Communications, 2015, 51, 133-136.	4.1	63
35	Applications of Chiral Thioureaâ€Amine/Phosphine Organocatalysts in Catalytic Asymmetric Reactions. ChemCatChem, 2017, 9, 718-727.	3.7	63
36	Enantioselective synthesis of spirocyclic cyclopentenes: asymmetric [3+2] annulation of 2-arylideneindane-1,3-diones with MBH carbonates derivatives catalyzed by multifunctional thiourea–phosphines. Tetrahedron, 2012, 68, 7911-7919.	1.9	62

#	Article	IF	CITATIONS
37	Recent Advances in the Construction of Trifluoromethyl ontaining Spirooxindoles through Cycloaddition Reactions. Chemistry - an Asian Journal, 2020, 15, 1225-1233.	3.3	62
38	Recent advances in annulation reactions based on zwitterionic π-allyl palladium and propargyl palladium complexes. Organic Chemistry Frontiers, 2021, 8, 3475-3501.	4.5	61
39	Chemoselective Reduction of Isatinâ€Derived Electronâ€Deficient Alkenes Using Alkylphosphanes as Reduction Reagents. European Journal of Organic Chemistry, 2011, 2011, 2668-2672.	2.4	60
40	Catalystâ€Dependent Divergent Synthesis of Pyrroles from 3â€Alkynyl Imine Derivatives: A Noncarbonylative and Carbonylative Approach. Angewandte Chemie - International Edition, 2014, 53, 8492-8497.	13.8	59
41	Binding of polycyclic aromatic hydrocarbons to mutants of odorant-binding protein: A first step towards biosensors for environmental monitoring. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 666-671.	2.3	57
42	Asymmetric catalytic Mannich-type reaction of hydrazones with difluoroenoxysilanes using imidazoline-anchored phosphine ligand–zinc(ii) complexes. Organic and Biomolecular Chemistry, 2012, 10, 2509.	2.8	57
43	Phosphineâ€Catalyzed Asymmetric [4+2] Annulation of Vinyl Ketones with Oxindoleâ€Derived α,βâ€Unsa Imines: Enantioselective Syntheses of 2′,3′â€Dihydroâ€1′ <i>H</i> â€spiro[indolineâ€3,4′â€pyridin]á Synthesis and Catalysis, 2013, 355, 3351-3357.	turated i€2â€ones	:. Advanced
44	Recent Developments in Cyclopropane Cycloaddition Reactions. Trends in Chemistry, 2019, 1, 779-793.	8.5	55
45	Catalytic Asymmetric Synthesis of 2â€Alkyleneoxetanes through [2+2] Annulation of Allenoates with Trifluoromethyl Ketones. Advanced Synthesis and Catalysis, 2012, 354, 1926-1932.	4.3	53
46	NaH promoted [4+3] annulation of crotonate-derived sulfur ylides with thioaurones: synthesis of 2,5-dihydrobenzo[4,5]thieno[3,2-b]oxepines. Chemical Communications, 2017, 53, 10672-10675.	4.1	52
47	Thermally induced [3+2] cyclization of aniline-tethered alkylidenecyclopropanes: a facile synthetic protocol of pyrrolo[1,2-a]indoles. Chemical Communications, 2012, 48, 7696.	4.1	49
48	Axially Chiral Phosphineâ€Oxazoline Ligands in Silver(I)―Catalyzed Asymmetric Mannich Reaction of Aldimines with Trimethylsiloxyfuran. Advanced Synthesis and Catalysis, 2009, 351, 2897-2902.	4.3	46
49	Copper-catalyzed cascade cyclization of 1,5-enynes via consecutive trifluoromethylazidation/diazidation and click reaction: self-assembly of triazole fused isoindolines. Chemical Communications, 2016, 52, 13163-13166.	4.1	46
50	Phosphine atalyzed Asymmetric Formal [4+2] Tandem Cyclization of Activated Dienes with Isatylidenemalononitriles: Enantioselective Synthesis of Multistereogenic Spirocyclic Oxindoles. Advanced Synthesis and Catalysis, 2014, 356, 736-742.	4.3	45
51	Gold(I)â€Catalyzed Cycloisomerization of Nitrogen―and Oxygenâ€Tethered Alkylidenecyclopropanes to Tricyclic Compounds. Chemistry - A European Journal, 2012, 18, 7026-7029.	3.3	44
52	Divergent reaction pathways in gold-catalyzed cycloisomerization of 1,5-enynes containing a cyclopropane ring: dramatic ortho substituent and temperature effects. Chemical Science, 2016, 7, 4318-4328.	7.4	44
53	Substrate-controlled Rh(<scp>ii</scp>)-catalyzed single-electron-transfer (SET): divergent synthesis of fused indoles. Chemical Communications, 2016, 52, 350-353.	4.1	44
54	Gold(<scp>i</scp>)-catalyzed highly stereoselective synthesis of polycyclic indolines: the construction of four contiguous stereocenters. Chemical Communications, 2016, 52, 346-349.	4.1	44

#	Article	IF	CITATIONS
55	Beyond the Aza-Moritaâ^'Baylisâ^'Hillman Reaction: Lewis Base-Catalyzed Reactions ofN-Boc-imines with Ethyl 2,3-Butadienoate. Journal of Organic Chemistry, 2009, 74, 6343-6346.	3.2	43
56	An Efficient Method for the Synthesis of Alkylidenecyclobutanones by Goldâ€Catalyzed Oxidative Ring Enlargement of Vinylidenecyclopropanes. Chemistry - A European Journal, 2012, 18, 10501-10505.	3.3	42
57	Stacking interactions as the principal design element in acyl-transfer catalysts. Organic and Biomolecular Chemistry, 2006, 4, 4223.	2.8	40
58	Visibleâ€Lightâ€Induced Trifluoromethylation of Isonitrileâ€Substituted Methylenecyclopropanes: Facile Access to 6â€(Trifluoromethyl)â€7,8â€Dihydrobenzo[<i>k</i>]phenanthridine Derivatives. Chemistry - A European Journal, 2016, 22, 13059-13063.	3.3	39
59	Copper-catalyzed trifluoromethylazidation and rearrangement of aniline-linked 1,7-enynes: access to CF ₃ -substituted azaspirocyclic dihydroquinolin-2-ones and furoindolines. Chemical Communications, 2017, 53, 8980-8983.	4.1	39
60	Activation Relay on Rhodium-Catalyzed C–H Aminomethylation in Cooperation with Photoredox Catalysis. Organic Letters, 2019, 21, 4077-4081.	4.6	39
61	Phosphineâ€Catalyzed Annulations of 4,4â€Dicyanoâ€2â€Methylenebutâ€3â€enoates with Maleimides and Male Anhydride. Angewandte Chemie - International Edition, 2014, 53, 10768-10773.	ic 13.8	38
62	Synthesis of Polysubstituted Polycyclic Aromatic Hydrocarbons by Gold-Catalyzed Cyclization–Oxidation of Alkylidenecyclopropane-Containing 1,5-Enynes. ACS Catalysis, 2017, 7, 4242-4247.	11.2	38
63	Trisubstituted alkenes with a single activator as dipolarophiles in a highly diastereo- and enantioselective [3+2] cycloaddition with vinyl epoxides under Pd-catalysis. Chemical Communications, 2018, 54, 13143-13146.	4.1	38
64	Zinc(II)â€Catalyzed Mannichâ€type Reactions of Hydrazones with Difluoroenoxysilane and Its Application in the Synthesis of Optically Active 2,2â€Difluoroâ€3â€oxoâ€benzohydrazide. Chinese Journal of Chemistry, 2010, 28, 1709-1716.	4.9	36
65	Diastereo―and Enantioselective Construction of γâ€Butenolides through Chiral Phosphane atalyzed Allylic Alkylation of Morita–Baylis–Hillman Acetates. European Journal of Organic Chemistry, 2011, 2011, 5146-5155.	2.4	36
66	Gold(<scp>i</scp>)-catalyzed cycloisomerization of vinylidenecyclopropane-enes <i>via</i> carbene or non-carbene processes. Chemical Science, 2015, 6, 5519-5525.	7.4	36
67	Amine-catalyzed tunable reactions of allenoates with dithioesters: formal [4+2] and [2+2] cycloadditions for the synthesis of 2,3-dihydro-1,4-oxathiines and enantioenriched thietanes. Chemical Communications, 2015, 51, 6430-6433.	4.1	36
68	In vitro fluorescence displacement investigation of thyroxine transport disruption by bisphenol A. Journal of Environmental Sciences, 2011, 23, 315-321.	6.1	35
69	Chiral multifunctional thiourea-phosphine catalyzed asymmetric [3 + 2] annulation of Morita–Baylis–Hillman carbonates with maleimides. Beilstein Journal of Organic Chemistry, 2012, 8, 1098-1104.	2.2	35
70	Phosphaneâ€Catalyzed Umpolung Addition Reaction of Nucleophiles to Ethyl 2â€Methylâ€2,3â€butadienoate. European Journal of Organic Chemistry, 2011, 2011, 2673-2677.	2.4	34
71	Asymmetric substitutions of O-Boc-protected Morita–Baylis–Hillman adducts with pyrrole and indole derivatives. Organic and Biomolecular Chemistry, 2012, 10, 1396-1405.	2.8	33
72	Thermal induced intramolecular [2 + 2] cycloaddition of allene-ACPs. Organic and Biomolecular Chemistry, 2013, 11, 3949.	2.8	33

#	Article	IF	CITATIONS
73	Rhodium(I)â€Catalyzed Cycloisomerization of Nitrogenâ€Tethered Indoles and Alkylidenecyclopropanes: Convenient Access to Polycyclic Indole Derivatives. Chemistry - A European Journal, 2013, 19, 13668-13673.	3.3	32
74	Highly Efficient Construction of Trifluoromethylated Heterocycles; [3+2] Annulation of N,N′â€Cyclic or C,Nâ€Cyclic Azomethine Imines with Trifluoromethylâ€Containing Electronâ€Deficient Olefins. European Journal of Organic Chemistry, 2013, 2013, 401-406.	2.4	32
75	Synthesis of indolizine derivatives containing eight-membered rings <i>via</i> a gold-catalyzed two-fold hydroarylation of diynes. Chemical Communications, 2018, 54, 1225-1228.	4.1	32
76	Highly Efficient and Stereoselective Construction of Bispirooxindole Derivatives via a Threeâ€Component 1,3â€Dipolar Cycloaddition Reaction. ChemistryOpen, 2014, 3, 93-98.	1.9	31
77	Palladium-catalyzed oxidative cyclization of aniline-tethered alkylidenecyclopropanes with O ₂ : a facile protocol to selectively synthesize 2- and 3-vinylindoles. Chemical Communications, 2017, 53, 216-219.	4.1	30
78	Silver- and Gold-Catalyzed Intramolecular Rearrangement of Propargylic Alcohols Tethered with Methylenecyclopropanes: Stereoselective Synthesis of Allenylcyclobutanols and 1-Vinyl-3-oxabicyclo[3.2.1]octan-8-one Derivatives. Journal of Organic Chemistry, 2009, 74, 9466-9469.	3.2	29
79	Gold(I) and BrÃ,nsted Acid Catalyzed Intramolecular Rearrangements of Vinylidenecyclopropanes. Chemistry - A European Journal, 2010, 16, 10975-10979.	3.3	29
80	Palladium(0) atalyzed Reaction of Cyclopropylidenecycloalkanes with Carbon Dioxide. European Journal of Organic Chemistry, 2011, 2011, 7189-7193.	2.4	29
81	Asymmetric Synthesis of Bioxindoleâ€Substituted Hexahydrofuro[2,3â€ <i>b</i>]furans <i>via</i> Hydroquinine Anthraquinoneâ€1,4â€diyl Dietherâ€Catalyzed Domino Annulation of Acylidenoxindoles/Isatins, Acylidenoxindoles and Allenoates. Advanced Synthesis and Catalysis, 2014, 356, 3799-3808.	4.3	29
82	Phosphorus-containing Lewis base catalyzed highly regioselective cyclization of isatin derived electron-deficient alkenes with but-3-yn-2-one. Tetrahedron, 2012, 68, 2401-2408.	1.9	26
83	Lewis base-catalyzed reactions of cyclopropenones: novel synthesis of mono- or multi-substituted allenic esters. Chemical Communications, 2014, 50, 115-117.	4.1	26
84	Phosphineâ€Mediated Dimerization of Conjugated Eneâ€Yne Ketones: Stereoselective Construction of Dihydrobenzofurans. Advanced Synthesis and Catalysis, 2017, 359, 1263-1270.	4.3	26
85	Highly Efficient and Diastereoselective Construction of Trifluoromethyl-Containing Spiro[pyrrolidin-3,2â€2-oxindole] by a Catalyst-free Mutually Activated [3+2] Cycloaddition Reaction. Chemistry - A European Journal, 2018, 24, 10038-10043.	3.3	26
86	Gold(<scp>i</scp>)-catalyzed cascade cyclization of <i>O</i> -tethered 1,7-enynes bearing a cyclopropane moiety: construction of multi-substituted furans. Chemical Communications, 2019, 55, 8126-8129.	4.1	26
87	The reaction of acyl cyanides with "Huisgen zwitterion†an interesting rearrangement involving ester group migration between oxygen and nitrogen atoms. Organic and Biomolecular Chemistry, 2009, 7, 4708.	2.8	25
88	Gold atalyzed Cycloisomerization of Yneâ€Vinylidenecyclopropanes: A Threeâ€Carbon Synthon for [3+2] Cycloadditions. Chemistry - A European Journal, 2014, 20, 3198-3204.	3.3	25
89	Access to 2′,3′-dihydro-1′H-spiro[indoline-3,4′-pyridin]-2-ones via amino acid derived phosphine-cata asymmetric [4+2] annulation with easily available oxindole-derived î±,β-unsaturated imines. Tetrahedron, 2014, 70, 2838-2846.	alyzed 1.9	25
90	Solvent-controlled nucleophilic trifluoromethylthiolation of Morita–Baylis–Hillman carbonates: dual roles of DABCO in activating the Zard's trifluoromethylthiolation reagent and the MBH carbonates. Organic Chemistry Frontiers, 2015, 2, 1088-1093.	4.5	25

#	Article	IF	CITATIONS
91	Unprecedented Oxycyanation of Methylenecyclopropanes for the Facile Synthesis of Benzoxazine Compounds Containing a Cyano Group. Chemistry - A European Journal, 2016, 22, 5146-5150.	3.3	25
92	Cascade Amination/Cyclization/Aromatization Process for the Rapid Construction of [2,3- <i>c</i>]Dihydrocarbazoles and [2,3- <i>c</i>]Carbazoles. Organic Letters, 2017, 19, 4476-4479.	4.6	25
93	Asymmetric Azaâ€Morita–Baylis–Hillman Reactions of Alkyl Vinyl Ketones with <i>N</i> â€Protected Imines or In Situ Generated <i>N</i> â€Protected Imines. European Journal of Organic Chemistry, 2010, 2010, 4098-4105.	2.4	24
94	Rh(II)-Catalyzed Chemoselective Oxidative Amination and Cyclization Cascade of	4.6	24
95	An atmosphere and light tuned highly diastereoselective synthesis of cyclobuta/penta[<i>b</i>]indoles from aniline-tethered alkylidenecyclopropanes with alkynes. Chemical Communications, 2018, 54, 2870-2873.	4.1	24
96	Azaâ€Michael Addition Reactions of Hydrazones with Activated Alkynes Catalyzed by Nitrogen ontaining Organic Bases. European Journal of Organic Chemistry, 2010, 2010, 4088-4097.	2.4	23
97	Rhodium(I)-Catalyzed Pauson–Khand-type [3 + 2 + 1] Cycloaddition Reaction of Ene-Vinylidenecyclopropanes and CO: A Highly Regio- and Stereoselective Synthetic Approach for the Preparation of Aza- and Oxa-Bicyclic Compounds. Organometallics, 2012, 31, 4601-4609.	2.3	23
98	Construction of spiro[indoline]oxindoles through one-pot thermal-induced [3+2] cycloaddition/silica gel-promoted fragmentation sequence between isatin ketonitrones andÂelectron-deficient alkynes. Tetrahedron, 2013, 69, 4088-4097.	1.9	23
99	Palladium-catalyzed intramolecular transfer hydrogenation & cycloaddition of <i>p</i> -quinamine-tethered alkylidenecyclopropanes to synthesize perhydroindole scaffolds. Chemical Communications, 2018, 54, 14085-14088.	4.1	23
100	Acid atalyzed Cascade Reactions of Arylvinylcyclopropenes with Acetals and Aldehydes for the Construction of Different Aromatic Systems. Chemistry - A European Journal, 2009, 15, 7543-7548.	3.3	22
101	Reaction of aldimines and difluoroenoxysilane, an unexpected protocol for the synthesis of 2,2-difluoro-3-hydroxy-1-ones. Tetrahedron, 2010, 66, 7361-7366.	1.9	22
102	C(sp ³)â^'H Functionalizations Promoted by the Gold Carbene Generated from Vinylidenecyclopropanes. Chemistry - A European Journal, 2016, 22, 18080-18084.	3.3	22
103	Pd(II)-Catalyzed Tandem Heterocyclization of 1-(1-Alkynyl)cyclopropyl Oxime Derivatives for the Synthesis of Functionalized Pyrroles. Organic Letters, 2016, 18, 3930-3933.	4.6	22
104	Gold(I) or Gold(III) as Real Intermediate Species in Gold-Catalyzed Cycloaddition Reactions of Enynal/Enynone?. ACS Catalysis, 2020, 10, 6682-6690.	11.2	22
105	A Three omponent Condensation for the Construction of the Spiro[indolineâ€3,3′â€piperidin]â€2â€one Skeleton. European Journal of Organic Chemistry, 2012, 2012, 2792-2800.	2.4	21
106	Allenic Esters from Cyclopropenones by Lewis Base Catalysis: Substrate Scope, the Asymmetric Variant from the Dynamic Kinetic Asymmetric Transformation, and Mechanistic Studies. ChemCatChem, 2015, 7, 3340-3349.	3.7	21
107	A gold(<scp>i</scp>)-catalyzed intramolecular tandem cyclization reaction of alkylidenecyclopropane-containing alkynes. Chemical Communications, 2017, 53, 11666-11669.	4.1	21
108	Catalyst-controlled synthesis of 4-amino-isoquinolin-1(2 <i>H</i>)-one and oxazole derivatives. Organic Chemistry Frontiers, 2018, 5, 1466-1470.	4.5	21

#	Article	IF	CITATIONS
109	Nickel-Catalyzed Synthesis of Benzo[<i>b</i>]naphtho[1,2- <i>d</i>]azepine via Intramolecular Radical Tandem Cyclization of Alkyl Bromide-Tethered Alkylidenecyclopropanes. Organic Letters, 2018, 20, 6229-6233.	4.6	21
110	Dual Nickel-/Palladium-Catalyzed Reductive Cross-Coupling Reactions between Two Phenol Derivatives. Organic Letters, 2020, 22, 6334-6338.	4.6	21
111	Cold(<scp>i</scp>)-catalyzed dehydrogenative cycloisomerization of 1,5-enynes. Chemical Communications, 2016, 52, 10799-10802.	4.1	20
112	Phosphineâ€Catalyzed Intermolecular Annulations of Fluorinated <i>ortho</i> â€Aminophenones with Alkynones <i>–</i> The Switchable [4+2] or [4+2]/[3+2] Cycloaddition. Advanced Synthesis and Catalysis, 2019, 361, 2129-2135.	4.3	20
113	Cascade cyclization reactions of alkylidenecyclopropanes for the construction of polycyclic lactams and lactones by visible light photoredox catalysis. Organic Chemistry Frontiers, 2020, 7, 374-379.	4.5	20
114	Asymmetric Reactions Catalyzed by Chiral Tertiary Phosphines. Chinese Journal of Chemistry, 2020, 38, 1395-1421.	4.9	20
115	The performance of computational techniques in locating the charge separated intermediates in organocatalytic transformations. Journal of Computational Chemistry, 2009, 30, 2617-2624.	3.3	19
116	Catalyst-Controlled Product Selectivity for Cycloaddition of Bis(indol-3-yl)-allenes to Fused Spiroindolines and Mechanistic Studies. Organic Letters, 2019, 21, 8250-8255.	4.6	19
117	Rhodium(ii)-catalyzed divergent intramolecular tandem cyclization of N- or O-tethered cyclohexa-2,5-dienones with 1-sulfonyl-1,2,3-triazole: synthesis of cyclopropa[cd]indole and benzofuran derivatives. Organic Chemistry Frontiers, 2019, 6, 2884-2891.	4.5	19
118	Thermally Induced Electrocyclic Reaction of Methylenecyclopropane Methylene Diketone Derivatives: A Facile Method for the Synthesis of Spiro[2.5]octa-3,5-dienes. Organic Letters, 2010, 12, 5120-5123.	4.6	18
119	New multifunctional chiral phosphines and BINOL derivatives co-catalyzed enantioselective aza-Morita–Baylis–Hillman reaction of 5,5-disubstituted cyclopent-2-enone and N-sulfonated imines. Organic and Biomolecular Chemistry, 2012, 10, 7429.	2.8	18
120	Gold(I) atalyzed Cycloisomerization of <i>ortho</i> â€(Propargyloxy)arenemethylenecyclopropanes Controlled by Adjacent Substituents at Aromatic Rings. Chemistry - A European Journal, 2017, 23, 6845-6852.	3.3	18
121	Tunable regiodivergent phosphine-catalyzed [3 + 2] cycloaddition of alkynones and trifluoroacetyl phenylamides. Organic Chemistry Frontiers, 2017, 4, 2392-2402.	4.5	18
122	Gold-catalyzed ring enlargement and cycloisomerization of alkynylamide tethered alkylidenecyclopropanes. Organic Chemistry Frontiers, 2018, 5, 2980-2985.	4.5	18
123	Catalyst-free geminal aminofluorination of <i>ortho</i> -sulfonamide-tethered alkylidenecyclopropanes <i>via</i> a Wagner–Meerwein rearrangement. Chemical Communications, 2018, 54, 10503-10506.	4.1	18
124	A Formal Condensation and [4+1] Annulation Reaction of 3â€isothiocyanato Oxindoles with Aza―o â€Quinone Methides. Advanced Synthesis and Catalysis, 2019, 361, 5466-5471.	4.3	18
125	Privileged chiral catalysts in asymmetric Morita-Baylis-Hillman/aza-Morita-Baylis-Hillman reaction. Science Bulletin, 2010, 55, 1699-1711.	1.7	17
126	DABCOâ€Mediated [4+2] Annulation of Butâ€3â€ynâ€2â€one and Activated Ketones: Facile Preparation of 2,3â€Dihydropyranâ€4â€one. European Journal of Organic Chemistry, 2012, 2012, 3338-3341.	2.4	17

#	Article	IF	CITATIONS
127	Morita–Baylis–Hillman reactions of isatins with allenoates. Tetrahedron, 2012, 68, 4899-4905.	1.9	17
128	Grignard Reagent/Cul/LiClâ€Mediated Stereoselective Cascade Addition/Cyclization of Diynes: A Novel Pathway for the Construction of 1â€Methyleneindene Derivatives. Chemistry - A European Journal, 2013, 19, 15682-15688.	3.3	17
129	Rutheniumâ€Catalyzed Intramolecular [2+2+2] Cycloaddition and Tandem Crossâ€Metathesis of Triynes and Enediynes. ChemistryOpen, 2013, 2, 63-68.	1.9	17
130	A rhodium(<scp>iii</scp>)-catalyzed tunable coupling reaction of indole derivatives with alkylidenecyclopropanes <i>via</i> C–H activation. Chemical Communications, 2019, 55, 7558-7561.	4.1	17
131	<i>N</i> ² â€Selective Autocatalytic Ditriazolylation Reactions of Cyclopropenones and Tropone with <i>N</i> ¹ â€Sulfonylâ€1,2,3â€triazoles. Advanced Synthesis and Catalysis, 2017, 359, 3304-3310.	4.3	16
132	Phosphine-catalyzed fixation of CO ₂ with γ-hydroxyl alkynone under ambient temperature and pressure: kinetic resolution and further conversion. Organic Chemistry Frontiers, 2019, 6, 2420-2429.	4.5	16
133	Gold(I)â€Catalyzed Ring Expansion of Alkynylcyclopropyl Allyl Ethers to Construct Tetrasubstituted Methylenecyclobutanones: A Mechanistic Investigation about the Character of Catalytic Amount of Water. Advanced Synthesis and Catalysis, 2019, 361, 2321-2328.	4.3	16
134	Site-Selective α-Alkoxyl Alkynation of Alkyl Esters Mediated by Boryl Radicals. Organic Letters, 2019, 21, 2927-2931.	4.6	16
135	Phosphite-mediated annulation: an efficient protocol for the synthesis of multi-substituted cyclopropanes and aziridines. Tetrahedron, 2010, 66, 304-313.	1.9	15
136	Manganese(III)-mediated oxidative annulation of vinylidenecyclopropanes with 1,3-dicarbonyl compounds. Tetrahedron, 2011, 67, 7139-7142.	1.9	15
137	Gold(I)â€Catalyzed Intramolecular Carbonâ€Oxygen Bond Cleavage Reaction <i>via</i> Gold Carbenes Derived from Vinylidenecyclopropanes. Advanced Synthesis and Catalysis, 2016, 358, 3002-3009.	4.3	15
138	Rh(II)-Catalyzed Chemoselective Oxidative Amination and Nucleophilic Trapping of <i>gem</i> -Dimethyl Alkynyl-Tethered Sulfamates. Organic Letters, 2018, 20, 84-87.	4.6	15
139	Construction of spirothioureas having an amino quaternary stereogenic center via a [3 + 2] annulation of 3-isothiocyanato oxindoles with 2-aminoacrylates. Organic and Biomolecular Chemistry, 2018, 16, 9218-9222.	2.8	15
140	Cold- and silver-catalyzed intramolecular annulation and rearrangement of aniline-linked 1,6-enynes containing methylenecyclopropanes. Organic Chemistry Frontiers, 2018, 5, 2091-2097.	4.5	15
141	Evaluation of the noncovalent binding interactions between polycyclic aromatic hydrocarbon metabolites and human p53 cDNA. Science of the Total Environment, 2010, 408, 6285-6290.	8.0	14
142	Silver(I)-catalyzed tandem reactions of N-activated aziridine-propargylic esters to pyrrolidin-3-one derivatives. Tetrahedron Letters, 2012, 53, 6173-6176.	1.4	14
143	Facile synthesis of 2-pyrazolines and α,β-diamino ketones via regioselective ring-opening of hydrazone-tethered aziridines. Chemical Communications, 2012, 48, 9607.	4.1	14
144	Exploration of A New Zwitterion: Phosphineâ€Catalyzed [2+1+2] Cycloaddition Reaction. Advanced Synthesis and Catalysis, 2017, 359, 1663-1671.	4.3	14

#	Article	IF	CITATIONS
145	Phosphineâ€Catalyzed [3+2] or [4+2] Cycloaddition/S _N 2 Substitution Domino Reaction of <i>ortho</i> â€Aminotrifluoroaceto―phenone Derivatives with Hexâ€3â€ynâ€2â€one: Preparation of Functionalized 1â€Benzazepine Compounds. Advanced Synthesis and Catalysis, 2017, 359, 3176-3185.	4.3	14
146	A facile method for the synthesis of trifluoromethylthio-/chloro-homoallylic alcohols from methylenecyclopropanes. Organic Chemistry Frontiers, 2018, 5, 2030-2034.	4.5	14
147	Gold(<scp>i</scp>)-catalyzed enantioselective synthesis of polycyclic indoline skeletons and enantiomerically enriched î²-substituted tryptamine-allenes by kinetic resolution. Chemical Communications, 2019, 55, 4210-4213.	4.1	14
148	Rhodium(II)â€Catalyzed Intramolecular Transannulation of 4â€Methoxycyclohexaâ€2,5â€dienone Tethered 1â€Sulfonylâ€1,2,3â€ŧriazoles: Synthesis of Azaspiro[5.5]undecane Derivatives. Advanced Synthesis and Catalysis, 2019, 361, 3430-3435.	4.3	14
149	Visible-Light-Mediated Decarboxylative Tandem Carbocyclization of Acrylamide-Attached Alkylidenecyclopropanes: Access to Polycyclic Benzazepine Derivatives. Organic Letters, 2020, 22, 5212-5216.	4.6	14
150	Visible light mediated synthesis of 4-aryl-1,2-dihydronaphthalene derivatives <i>via</i> single-electron oxidation or MHAT from methylenecyclopropanes. Organic Chemistry Frontiers, 2021, 8, 94-100.	4.5	14
151	Silyl Radical-Mediated Carbocyclization of Acrylamide-/Vinyl Sulfonamide-Attached Alkylidenecyclopropanes <i>via</i> Photoredox Catalysis with a Catalytic Amount of Silane Reagent. ACS Catalysis, 2021, 11, 4372-4380.	11.2	14
152	Direct Activation of a Remote C(sp ³)–H Bond Enabled by a Visible‣ight Photosensitized Allene Moiety. Angewandte Chemie - International Edition, 2021, 60, 12053-12059.	13.8	14
153	The Morita–Baylis–Hillman reaction for non-electron-deficient olefins enabled by photoredox catalysis. Chemical Science, 2022, 13, 1478-1483.	7.4	14
154	Preparation of Di-μ-chlorobis[ï€-1-chloro-1-aryl-2-(2′,2′-diarylvinyl)allyl]palladium(II) Complexes and a Novel Dehydrogenative Rearrangement of Arylvinylcyclopropenes for the Synthesis of 7 <i>H</i> -Benzo[<i>c</i>]fluorene Derivatives. Organometallics, 2011, 30, 627-632.	2.3	13
155	Phosphineâ€Promoted Cyclization of Dicyclopropenones. Advanced Synthesis and Catalysis, 2013, 355, 3545-3552.	4.3	13
156	Mechanistic studies on the atmosphere and light tuned synthesis of cyclobuta/penta[<i>b</i>]indoles. Organic Chemistry Frontiers, 2018, 5, 1890-1895.	4.5	13
157	Palladium(0)-Catalyzed Intramolecular Cascade Cyclization of Methylenecyclopropanes. Organic Letters, 2018, 20, 7141-7144.	4.6	13
158	Visible Light Induced Cyclization to Spirobi[indene] Skeletons from Functionalized Alkylidienecyclopropanes. Organic Letters, 2020, 22, 2494-2499.	4.6	13
159	Palladium Acetate Catalyzed Oxidative Aromatization of Methylenecyclopropanes. European Journal of Organic Chemistry, 2010, 2010, 3307-3311.	2.4	12
160	Synthesis of Highly Functionalized Aminoindolizines by Titanium(IV) Chloride Mediated Cycloisomerization and Phosphineâ€Catalyzed Azaâ€Michael Addition Reactions. Asian Journal of Organic Chemistry, 2013, 2, 480-485.	2.7	12
161	Synthesis of 1,2â€Ðihydrocyclobuta[b]quinoline Derivatives from Isocyanophenyl ubstituted Methylenecyclopropanes. Advanced Synthesis and Catalysis, 2017, 359, 3437-3443.	4.3	12
162	Baseâ€Promoted Tandem Cyclization for the Synthesis of Benzonitriles by Câ^'C Bond Construction. Advanced Synthesis and Catalysis, 2018, 360, 808-813.	4.3	12

#	Article	IF	CITATIONS
163	Thermally-induced intramolecular [2 + 2] cycloaddition of acrylamide-tethered alkylidenecyclopropanes. Organic and Biomolecular Chemistry, 2018, 16, 6399-6404.	2.8	12
164	Palladium(II) atalyzed Intermolecular Cascade Cyclization of Methylenecyclopropanes with Aromatic Alkynes: Construction of Spirocyclic Compounds Containing Indene and 1,2â€Dihydronaphthalene Moieties. Advanced Synthesis and Catalysis, 2019, 361, 3446-3450.	4.3	12
165	Rhodium(III) atalyzed Cross Coupling of Sulfoxonium Ylides and 1,3â€Diynes to Produce Naphtholâ€Indole Derivatives: An Arene ortho Câ^'H Activation/Annulation Cascade. ChemCatChem, 2020, 12, 5903-5906.	3.7	12
166	Rhodium ^{III} / <scp>Silver^I</scp> Relay Catalyzed C—H Aminomethylation with Imine Equivalents and Lewis Acid Catalyzed [4+2] Cycloaddition of Indoles with Triarylhexahydrotriazine ^{â€} . Chinese Journal of Chemistry, 2020, 38, 947-951.	4.9	12
167	Reactions of Vinylidenecyclopropanes with Diphenyl Diselenide in the Presence of AIBN and Thermallyâ€Induced Further Transformations. Chemistry - A European Journal, 2012, 18, 1280-1285.	3.3	11
168	Gold(i) catalyzed cascade cyclization: intramolecular two-fold nucleophilic addition to vinylidenecyclopropanes (VDCPs). Organic Chemistry Frontiers, 2018, 5, 197-202.	4.5	11
169	A Catalystâ€Free Selfâ€Catalyzed [3+2] Cycloaddition Reaction of 3â€Isothiocyanato Oxindoles and Vinylpyridines. European Journal of Organic Chemistry, 2018, 2018, 4905-4916.	2.4	11
170	Synthesis of Diiodinated All-Carbon 3,3′-Diphenyl-1,1′-spirobiindene Derivatives via Cascade Enyne Cyclization and Electrophilic Aromatic Substitution. Journal of Organic Chemistry, 2019, 84, 9282-9296.	3.2	11
171	Stereo―and Regioselective Construction of Spirooxindoles Having Continuous Spiral Rings via Asymmetric [3+2] Cyclization of 3â€Isothiocyanato Oxindoles with Thioaurone Derivatives. European Journal of Organic Chemistry, 2020, 2020, 6614-6622.	2.4	11
172	Estimating the Stereoinductive Potential of Cinchona Alkaloids with a Prochiral Probe Approach. Organic Letters, 2008, 10, 5413-5416.	4.6	10
173	Reduction of Activated Carbonyl Groups Using Alkylphosphanes as Reducing Agents: A Mechanistic Study. European Journal of Organic Chemistry, 2012, 2012, 2386-2393.	2.4	10
174	Diels–Alder dimerization of Morita–Baylis–Hillman acetates catalyzed by organocatalysts. Research on Chemical Intermediates, 2013, 39, 5-18.	2.7	10
175	Gold(I)â€Catalyzed 1,3â€ <i>O</i> â€Transposition Reactions: Ynesulfonamides to Ynamides. European Journal of Organic Chemistry, 2015, 2015, 4108-4113.	2.4	10
176	Chiral Bidentate NHC Ligands Based on the 1,1′â€Binaphthyl Scaffold: Synthesis and Application in Transitionâ€Metal atalyzed Asymmetric Reactions. Chemical Record, 2016, 16, 2740-2753.	5.8	10
177	Phosphineâ€Catalyzed Direct δâ€Carbon Addition of Alkynones to Electronâ€Deficient Carbonylâ€Groupâ€Containing Compounds: Preparation of Conjugated Dienes. ChemCatChem, 2016, 8, 3112-3117.	3.7	10
178	Dual-role of PtCl ₂ catalysis in the intramolecular cyclization of (hetero)aryl-allenes for the facile construction of substituted 2,3-dihydropyrroles and polyheterocyclic skeletons. Chemical Communications, 2017, 53, 5966-5969.	4.1	10
179	Copper(i)-catalyzed carbocyclization of acrylamide-tethered alkylidenecyclopropanes with diaryliodonium salts. Organic and Biomolecular Chemistry, 2017, 15, 9616-9621.	2.8	10
180	Indium(<scp>iii</scp>)-catalyzed intramolecular dearomative cycloaddition of <i>N</i> -sulfonylaziridines to indoles: facile synthesis of tetracyclic pyrroloindoline skeletons. Organic Chemistry Frontiers, 2018, 5, 423-427.	4.5	10

#	Article	IF	CITATIONS
181	Phosphine catalyzed δ-carbon addition and isomerization of alkynones to ketimines: the preparation of 1,3-diene substituted dihydroquinazolinones and 3-aminooxindoles. Organic Chemistry Frontiers, 2018, 5, 210-215.	4.5	10
182	Gold(I)-Catalyzed and Ligand-Controlled Regioselective Cascade Cycloisomerizations of Bis(indolyl)-1,3-diynes and a Mechanistic Explanation. Organic Letters, 2019, 21, 7799-7803.	4.6	10
183	Rh(<scp>i</scp>)-Catalyzed stereoselective intramolecular cycloaddition reactions of ene-vinylidenecyclopropanes for the construction of fused 6,5-bicyclic skeletons with a quaternary all-carbon stereocenter. Organic Chemistry Frontiers, 2019, 6, 2506-2513.	4.5	10
184	Mitsunobu-initiated cascade cyclization of <i>p</i> -quinamines and 2-furanylmethanols: highly regio- and diastereoselective synthesis of functionalized hydrobenzo[<i>c</i> , <i>d</i>]indoles. Organic and Biomolecular Chemistry, 2019, 17, 3737-3740.	2.8	10
185	Silver/Rhodium Relay Catalysis Enables Câ°H Functionalization of <i>Inâ€Situ</i> Generated Isoquinolines with Sulfoxonium Ylides: Construction of Hexahydrodibenzo[<i>a</i> , <i>g</i>]quinolizine Scaffolds. Advanced Synthesis and Catalysis, 2021, 363, 2664-2669.	4.3	10
186	Intramolecular difunctionalization of methylenecyclopropanes tethered with carboxylic acid by visible-light photoredox catalysis. Organic Chemistry Frontiers, 2021, 8, 4527-4532.	4.5	10
187	Reactivities of allenic and olefinic Michael acceptors towards phosphines. Chemical Communications, 2022, 58, 3358-3361.	4.1	10
188	Visible-light-mediated intramolecular radical cyclization of α-brominated amide-tethered alkylidenecyclopropanes. Chemical Communications, 2022, 58, 3653-3656.	4.1	10
189	Ringâ€Opening Reaction of Methylenecyclopropanes Derived from Methylenecyclopropyl Aldehydes through Cope Rearrangement. European Journal of Organic Chemistry, 2010, 2010, 6038-6042.	2.4	9
190	Metal-Free Ring Expansions of Methylenecyclopropanes Through Nitrene Equivalent. European Journal of Organic Chemistry, 2011, 2011, n/a-n/a.	2.4	9
191	Mechanistic studies for dirhodium-catalyzed ring expansion reactions. Organic Chemistry Frontiers, 2017, 4, 986-994.	4.5	9
192	Silver(I)-Catalyzed Intramolecular Cyclizations of Epoxide-Propargylic Esters to 1,4-Oxazine Derivatives. ChemistryOpen, 2017, 6, 21-24.	1.9	9
193	Palladium atalyzed Cascade Reductive and Carbonylative Cyclization of Ortho â€lodoâ€Tethered Methylenecyclopropanes (MCPs) Using N â€Formylsaccharin as CO Source. Advanced Synthesis and Catalysis, 2019, 361, 5677-5683.	4.3	9
194	Cu(<scp>i</scp>)-Catalyzed addition–cycloisomerization difunctionalization reaction of 1,3-enyne-alkylidenecyclopropanes (ACPs). Organic and Biomolecular Chemistry, 2020, 18, 7127-7138.	2.8	9
195	Divergent Construction of Fully Substituted Pyrroles and Cyclopentadiene Derivatives by Ynamide Annulations: 1,2-Cyclopropyl Migration versus Proton Transfer. Organic Letters, 2020, 22, 5466-5472.	4.6	9
196	BINDING INTERACTION BETWEEN POLYCYCLIC AROMATIC COMPOUNDS AND DNA BY FLUORESCENCE DISPLACEMENT METHOD. Environmental Toxicology and Chemistry, 2009, 28, 940.	4.3	8
197	Probing Phosphaneâ€Mediated [2+1] Annulation Reactions. European Journal of Organic Chemistry, 2010, 2010, 1977-1988.	2.4	8
198	Iron-catalyzed or iodine-induced intramolecular halocyclization of N-vinyl-tethered methylenecyclopropanes: facile access to halogenated 1,2-dihydroquinolines. Organic Chemistry Frontiers, 2017, 4, 1294-1298.	4.5	8

#	Article	IF	CITATIONS
199	One-Pot Synthesis of Spirocyclopenta[<i>a</i>]indene Derivatives via a Cascade Ring Expansion and Intramolecular Friedel–Crafts-Type Cyclization. Journal of Organic Chemistry, 2020, 85, 2438-2455.	3.2	8
200	Rhodium(III)-Catalyzed Decarboxylative Aminomethylation of Glycine Derivatives with Indoles via C–H Activation. Journal of Organic Chemistry, 2020, 85, 2838-2845.	3.2	8
201	Pd-Promoted cross coupling of iodobenzene with vinylgold <i>via</i> an unprecedented phenyl transmetalation from Pd to Au. Chemical Communications, 2020, 56, 6213-6216.	4.1	8
202	<i>N</i> -Hydroxyphthalimide imidate esters as amidyl radical precursors in the visible light photocatalyzed C–H amidation of heteroarenes. Organic Chemistry Frontiers, 2021, 8, 1935-1940.	4.5	8
203	Rh-Catalyzed intramolecular decarbonylative cyclization of <i>ortho</i> -formyl group tethered alkylidenecyclopropanes (ACPs) for the construction of 2-methylindenes. Organic Chemistry Frontiers, 2019, 6, 2667-2671.	4.5	7
204	Mechanistic studies for dirhodium-catalyzed chemoselective oxidative amination of alkynyl-tethered sulfamates. Organic Chemistry Frontiers, 2019, 6, 1123-1132.	4.5	7
205	Rapid construction of cyclopenta[b]naphthalene frameworks from propargylic alcohol tethered methylenecyclopropanes. Organic and Biomolecular Chemistry, 2020, 18, 7396-7400.	2.8	7
206	Rhodium(III)â€Catalyzed Câ^'H Benzylation of Indole's C3 Position with Aza―o â€Quinone Methides. Advanced Synthesis and Catalysis, 2020, 362, 3649-3654.	4.3	7
207	Mechanistic Studies on Propargyl <scp>Alcoholâ€īethered</scp> Alkylidenecyclopropane with Aryldiazonium Salt Initiated by Visible Light. Chinese Journal of Chemistry, 2021, 39, 295-300.	4.9	7
208	A visible-light mediated ring opening reaction of alkylidenecyclopropanes for the generation of homopropargyl radicals. Chemical Science, 2021, 12, 9088-9095.	7.4	7
209	Visible-light-mediated regioselective ring-opening hydrogenolysis of donor–acceptor cyclopropanes with DIPEA and H ₂ O. Organic Chemistry Frontiers, 2022, 9, 1960-1966.	4.5	7
210	Acetoxylation and Hydroxylation of Diarylmethylenecycloalkanes via Radical Approach. Journal of Organic Chemistry, 2010, 75, 2528-2533.	3.2	6
211	An unprecedented ring-opening reaction of N-(aziridin-2-ylmethylene)hydrazines to facile synthesis of functionalized enamines catalysed by Lewis acid. Chemical Communications, 2012, 48, 5334.	4.1	6
212	Nitrogen-containing Lewis bases catalyzed highly regio- and stereoselective reactions of allenyl acetates with isatin-derived oximes. Tetrahedron, 2013, 69, 3593-3607.	1.9	6
213	Study on the binding interaction between perfluoroalkyl acids and DNA. Environmental Science and Pollution Research, 2013, 20, 8355-8363.	5.3	6
214	Dimerization–cyclization reactions of isocyanoaryl-tethered alkylidenecyclobutanes <i>via</i> a triplet biradical mediated process. Organic Chemistry Frontiers, 2020, 7, 2634-2643.	4.5	6
215	Phosphine-catalyzed [3 + 2] annulation of 2-aminoacrylates with allenoates and mechanistic studies. Catalysis Science and Technology, 2020, 10, 3959-3964.	4.1	6
216	Construction of an isoquinolinone framework from carboxylic-ester-directed umpolung ring opening of methylenecyclopropanes. Chemical Communications, 2021, 57, 11201-11204.	4.1	6

#	Article	IF	CITATIONS
217	Copper-Catalyzed Synthesis of Indolyl Benzo[<i>b</i>]carbazoles and Their Photoluminescence Property. Organic Letters, 2021, 23, 5133-5137.	4.6	6
218	Tautomeric Equilibria in 3â€Aminoâ€1â€(2â€aminoimidazolâ€4â€yl)propâ€1â€ene, a Central Building Block of M Alkaloids. European Journal of Organic Chemistry, 2008, 2008, 3811-3816.	arine 2.4	5
219	Iron(III) atalyzed 1,3â€Functional Group Transposition Reactions: Synthetic Protocol to Access 3â€5ubstituted Indoles. Asian Journal of Organic Chemistry, 2016, 5, 423-427.	2.7	5
220	Visible-light-mediated interrupted Cloke-Wilson rearrangement of cyclopropyl ketones to construct oxy-bridged macrocyclic framework. , 2022, 1, 100001.		5
221	Lewis Acidâ€Catalyzed Stereoselective [7+7] Intermolecular Cyclization of Anilineâ€Tethered Alkylidenecyclopropanes: A Oneâ€Step Synthetic Protocol of 14â€Membered Macrocyclic Dimers. Asian Journal of Organic Chemistry, 2017, 6, 802-806.	2.7	4
222	A facile method for the synthesis of dihydroquinoline-azide from the Lewis acid-catalyzed reaction of alkylidenecyclopropanes with TMSN ₃ . Organic and Biomolecular Chemistry, 2019, 17, 9990-9993.	2.8	4
223	Rhodiumâ€Catalyzed Asymmetric Cycloisomerization of 1,3â€Diketones with Ketoâ€Vinylidenecyclopropanes: Synthesis of Enantiomerically Enriched Cyclic <i>β</i> â€Amino Alcohols. Advanced Synthesis and Catalysis, 2021, 363, 1727-1732.	4.3	4
224	Construction of Polysubstituted Spiro[2.3] or [3.3] Cyclic Frameworks Fused with a Tosylated Pyrrolidine Promoted by Visible-Light-Induced Photosensitization. Organic Chemistry Frontiers, 0, , .	4.5	4
225	Synthesis of Dihydroâ€2â€oxopyrrole (DPO) Building Blocks Catalyzed by Potassium Carbonate. European Journal of Organic Chemistry, 2019, 2019, 7179-7185.	2.4	3
226	Pd-catalyzed enantioselective cyclopropanation of nitriles with mono substituted allyl carbonates enabled by the bulky N-heterocyclic carbene ligand. Chemical Communications, 2019, 55, 6449-6452.	4.1	3
227	Thermallyâ€Induced Intramolecular [4+2] Cycloaddition of Allylamino―or Allyloxyâ€Tethered Alkylidenecyclopropanes. Chemistry - an Asian Journal, 2021, 16, 2463-2468.	3.3	3
228	Palladium catalyzed divergent cycloadditions of vinylidenecyclopropane-diesters with methyleneindolinones enabled by zwitterionic π-propargyl palladium species. Chemical Communications, 2021, 57, 4783-4786.	4.1	3
229	Rapid Construction of Polysubstituted "Caged―Oxa-Bishomocubane Framework from Vinylidenecyclopropanes through a Sequential Dual Catalysis of Copper(I) and Visible-Light-Induced Photosensitization. Organic Chemistry Frontiers, 0, , .	4.5	3
230	Correcting the wavefront aberration of membrane mirror based on liquid crystal spatial light modulator. , 2014, , .		2
231	Gold(I)â€catalyzed Benzylation of (Hetero)aryl Boronic Acids with (Hetero)benzyl Bromides by the Strategy of a S _N 2â€type Reaction. Chemistry - an Asian Journal, 2018, 13, 2791-2795.	3.3	2
232	A highly efficient method for the construction of cyclopropane-containing dihydroindole derivatives from indolemethylenecyclopropanes with DIAD and DEAD. Organic and Biomolecular Chemistry, 2020, 18, 333-336.	2.8	2
233	Construction of α,αâ€disubstituted αâ€Amino Acid Derivatives via azaâ€Moritaâ€Baylisâ€Hillman Reactions of 2â€Aminoacrylates with Activated Olefins. ChemCatChem, 2020, 12, 1143-1147.	3.7	2
234	Goldâ€Catalyzed Intramolecular Tandem Cyclization of Alkynolâ€Tethered Alkylidenecyclopropanes to Construct Naphthaleneâ€Fused Eight―to Elevenâ€Membered Cyclic Ethers. Advanced Synthesis and Catalysis, 0, , .	4.3	2

#	Article	IF	CITATIONS
235	Metalâ€Free Synthesis of Polysubstituted Imidazolinone Through Cyclization of Amidines with 2â€Substituted Acrylates. European Journal of Organic Chemistry, 2020, 2020, 1093-1099.	2.4	1
236	Direct Activation of a Remote C(sp 3)–H Bond Enabled by a Visible‣ight Photosensitized Allene Moiety. Angewandte Chemie, 2021, 133, 12160-12166.	2.0	0