Hulie Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7412804/publications.pdf

Version: 2024-02-01

623734 552781 39 673 14 26 citations g-index h-index papers 40 40 40 869 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	The development and application of dual-comb spectroscopy in analytical chemistry. Chinese Chemical Letters, 2023, 34, 107254.	9.0	1
2	A simple and efficient approach to sensitize the fluorescence detection to microwell plate. Sensors and Actuators B: Chemical, 2021, 343, 130070.	7.8	1
3	Selective Fabrication of Nanowires with High Aspect Ratios Using a Diffusion Mixing Reaction System for Applications in Temperature Sensing. Analytical Chemistry, 2019, 91, 7346-7352.	6.5	9
4	Droplet Sensitized Fluorescence Detection for Enzyme-Linked Immune Sorbent Assays on Microwell Plate. Analytical Chemistry, 2019, 91, 5685-5689.	6.5	6
5	Inkjet Printing Based Droplet Generation for Integrated Online Digital Polymerase Chain Reaction. Analytical Chemistry, 2018, 90, 5329-5334.	6. 5	65
6	On-line Redox Derivatization Liquid Chromatography Using a Carbon Monolithic Column. Bunseki Kagaku, 2018, 67, 469-478.	0.2	0
7	Reversibly Switching Molecular Spectra. ACS Applied Materials & amp; Interfaces, 2018, 10, 23247-23253.	8.0	2
8	Shell microparticles of morphology controlled and inner-modified hole from sequential inkjet-printed double emulsions. Science China Chemistry, 2018, 61, 1465-1469.	8.2	3
9	Elaborately programmed nanowires fabricated using a tapered push–pull nozzle system. Chemical Communications, 2018, 54, 719-722.	4.1	6
10	Stably electro-switchable poly-allyloxy hydroxypropyl sulfonate branched brush towards reversible capture and release of proteins and cells. Sensors and Actuators B: Chemical, 2017, 251, 334-338.	7.8	2
11	A reversibly electro-controllable polymer brush for electro-switchable friction. Journal of Materials Chemistry C, 2017, 5, 5877-5881.	5 . 5	19
12	Convectionâ€Diffusion Layer in an "Open Space―for Local Surface Treatment and Microfabrication using a Fourâ€Aperture Microchemical Pen. ChemPhysChem, 2017, 18, 2357-2363.	2.1	6
13	Inkjet Printing Based Separation of Mammalian Cells by Capillary Electrophoresis. Analytical Chemistry, 2017, 89, 8674-8677.	6.5	20
14	Writing of nanowires <i>via</i> high viscosity-induced nano diffusive layer. Journal of Materials Chemistry C, 2017, 5, 11666-11671.	5 . 5	11
15	The use of an inkjet injection technique in immunoassays by quantitative on-line electrophoretically mediated microanalysis. Journal of Chromatography A, 2016, 1477, 127-131.	3.7	13
16	Inkjet printing based assembly of thermoresponsive core–shell polymer microcapsules for controlled drug release. Journal of Materials Chemistry B, 2016, 4, 4156-4163.	5 . 8	17
17	Microchemical Pen: An Open Microreactor for Regionâ€Selective Surface Modification. ChemPhysChem, 2016, 17, 3155-3159.	2.1	10
18	Investigation of Simultaneous Immunoassay by a Two-dimensional Surface Plasmon Resonance Sensor Using Multiplied Beam Splitting Optics. Bunseki Kagaku, 2016, 65, 79-85.	0.2	0

#	Article	IF	Citations
19	Droplet Enhanced Fluorescence for Ultrasensitive Detection Using Inkjet. Analytical Chemistry, 2016, 88, 6135-6139.	6.5	13
20	Investigation of monodisperse droplet generation in liquids by inkjet. Sensors and Actuators B: Chemical, 2015, 220, 958-961.	7.8	14
21	Microchip with an open tubular immobilized ph gradient for UV whole column imaging detection. Electrophoresis, 2015, 36, 2542-2545.	2.4	5
22	Quantitative onâ€line concentration for capillary electrophoresis with inkjet sample introduction technique. Journal of Separation Science, 2015, 38, 2722-2728.	2.5	9
23	Drop-by-drop chemical reaction and sample introduction for capillary electrophoresis. Analyst, The, 2015, 140, 3953-3959.	3.5	17
24	Generation of controlled monodisperse porous polymer particles by dipped inkjet injection. RSC Advances, 2015, 5, 7297-7303.	3.6	16
25	A Compact Immunoassay Platform Based on a Multicapillary Glass Plate. Sensors, 2014, 14, 9132-9144.	3.8	10
26	Quantitative-nanoliter immunoassay in capillary immune microreactor adopted inkjet technology. Analytical Methods, 2014, 6, 2832-2836.	2.7	9
27	Development of Transmission-type Surface Plasmon Resonance Sensor Using a Two-dimensional Nanobeads Array Structure. Bunseki Kagaku, 2014, 63, 1-8.	0.2	0
28	Inkjet Nanoinjection for High-Thoughput Chemiluminescence Immunoassay on Multicapillary Glass Plate. Analytical Chemistry, 2013, 85, 7413-7418.	6.5	54
29	A piezoelectric drop-on-demand generator for accurate samples in capillary electrophoresis. Talanta, 2013, 107, 111-117.	5 . 5	33
30	Development of a Novel Two Dimensional Surface Plasmon Resonance Sensor Using Multiplied Beam Splitting Optics. Sensors, 2013, 13, 801-812.	3.8	5
31	Development of an LED-induced Fluorescence Analysis System Using a Compact Disk-type Microfluidic Device and Its Application to Enzyme-linked Immunosorbent Assay. Bunseki Kagaku, 2013, 62, 65-71.	0.2	1
32	Determination of Aromatic Pollutants in Tap Water by a Gas Chromatograph Equipped with a Finger-sized Atomic Emission Detector Using Deuterated Internal Standards. Bunseki Kagaku, 2012, 61, 755-761.	0.2	1
33	Development of an automatic multi-channel ink-jet ejection chemiluminescence system and its application to the determination of horseradish peroxidase. Analytica Chimica Acta, 2012, 739, 77-82.	5.4	31
34	Accurate and Highly Reproducible Picoliter Injection System for Capillary Electrophoresis. Analytical Chemistry, 2012, 84, 10537-10542.	6.5	23
35	Controllable construction of ordered three-dimensional microbeads structure and its application in enzyme-linked immunosorbent microarray. Sensors and Actuators B: Chemical, 2012, 168, 446-452.	7.8	3
36	Chipâ€based enantioselective openâ€tubular capillary electrochromatography using bovine serum albuminâ€gold nanoparticle conjugates as the stationary phase. Electrophoresis, 2009, 30, 1022-1029.	2.4	74

Hulie Zeng

#	Article	IF	CITATION
37	A selective optical chemical sensor for 2,6-dinitrophenol based on fluorescence quenching of a novel functional polymer. Talanta, 2006, 70, 160-168.	5.5	28
38	Selective determination of bisphenol A (BPA) in water by a reversible fluorescence sensor using pyrene/dimethyl \hat{l}^2 -cyclodextrin complex. Analytica Chimica Acta, 2006, 556, 313-318.	5.4	69
39	A reversible fluorescence sensor based on insoluble \hat{l}^2 -cyclodextrin polymer for direct determination of bisphenol A (BPA). Sensors and Actuators B: Chemical, 2006, 114, 565-572.	7.8	67