
Martien A M Groenen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7412617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Familial follicular cell thyroid carcinomas in a large number of Dutch German longhaired pointers. Veterinary and Comparative Oncology, 2022, 20, 227-234.	0.8	4
2	Assessing the genomic diversity and relatedness in 10 Canadian heritage chicken lines using wholeâ€genome sequence data. Journal of Animal Breeding and Genetics, 2022, , .	0.8	1
3	Fine Mapping of a Major Backfat QTL Reveals a Causal Regulatory Variant Affecting the CCND2 Gene. Frontiers in Genetics, 2022, 13, .	1.1	9
4	The Visayan Warty Pig (<i>Sus cebifrons</i>) Genome Provides Insight Into Chromosome Evolution and Sensory Adaptation in Pigs. Molecular Biology and Evolution, 2022, 39, .	3.5	3
5	Genetic consequences of longâ€ŧerm small effective population size in the critically endangered pygmy hog. Evolutionary Applications, 2021, 14, 710-720.	1.5	19
6	Heterogeneity of a dwarf phenotype in Dutch traditional chicken breeds revealed by genomic analyses. Evolutionary Applications, 2021, 14, 1095-1108.	1.5	7
7	Parallel Genomic Changes Drive Repeated Evolution of Placentas in Live-Bearing Fish. Molecular Biology and Evolution, 2021, 38, 2627-2638.	3.5	11
8	Human pathways in animal models: possibilities and limitations. Nucleic Acids Research, 2021, 49, 1859-1871.	6.5	35
9	Organoids: a promising new in vitro platform in livestock and veterinary research. Veterinary Research, 2021, 52, 43.	1.1	29
10	A natural knockout of the <i>MYO7A</i> gene leads to preâ€weaning mortality in pigs. Animal Genetics, 2021, 52, 514-517.	0.6	5
11	Deleterious Mutations in the TPO Gene Associated with Familial Thyroid Follicular Cell Carcinoma in Dutch German Longhaired Pointers. Genes, 2021, 12, 997.	1.0	5
12	Accelerated discovery of functional genomic variation in pigs. Genomics, 2021, 113, 2229-2239.	1.3	16
13	A 12 kb multi-allelic copy number variation encompassing a GC gene enhancer is associated with mastitis resistance in dairy cattle. PLoS Genetics, 2021, 17, e1009331.	1.5	25
14	Introgression contributes to distribution of structural variations in cattle. Genomics, 2021, 113, 3092-3102.	1.3	7
15	Time Course Transcriptomic Study Reveals the Gene Regulation During Liver Development and the Correlation With Abdominal Fat Weight in Chicken. Frontiers in Genetics, 2021, 12, 723519.	1.1	9
16	CNVRanger: association analysis of CNVs with gene expression and quantitative phenotypes. Bioinformatics, 2020, 36, 972-973.	1.8	17
17	The type of bottleneck matters: Insights into the deleterious variation landscape of small managed populations. Evolutionary Applications, 2020, 13, 330-341.	1.5	36
18	Prioritizing sequence variants in conserved non-coding elements in the chicken genome using chCADD. PLoS Genetics, 2020, 16, e1009027.	1.5	7

#	Article	IF	CITATIONS
19	From FAANG to fork: application of highly annotated genomes to improve farmed animal production. Genome Biology, 2020, 21, 285.	3.8	74
20	RNA-Seq Analysis Reveals Hub Genes Involved in Chicken Intramuscular Fat and Abdominal Fat Deposition During Development. Frontiers in Genetics, 2020, 11, 1009.	1.1	25
21	Genome-Wide Assessment of DNA Methylation in Chicken Cardiac Tissue Exposed to Different Incubation Temperatures and CO2 Levels. Frontiers in Genetics, 2020, 11, 558189.	1.1	11
22	Quantitative genetics of wing morphology in the parasitoid wasp Nasonia vitripennis: hosts increase sibling similarity. Heredity, 2020, 125, 40-49.	1.2	6
23	pCADD: SNV prioritisation in Sus scrofa. Genetics Selection Evolution, 2020, 52, 4.	1.2	21
24	Altered Hippocampal Epigenetic Regulation Underlying Reduced Cognitive Development in Response to Early Life Environmental Insults. Genes, 2020, 11, 162.	1.0	8
25	Mixed ancestry from wild and domestic lineages contributes to the rapid expansion of invasive feral swine. Molecular Ecology, 2020, 29, 1103-1119.	2.0	31
26	Impact of genotype, body weight and sex on the prenatal muscle transcriptome of Iberian pigs. PLoS ONE, 2020, 15, e0227861.	1.1	12
27	Parallel Genetic Origin of Foot Feathering in Birds. Molecular Biology and Evolution, 2020, 37, 2465-2476.	3.5	19
28	The Genomes of the Livebearing Fish Species Poeciliopsis retropinna and Poeciliopsis turrubarensis Reflect Their Different Reproductive Strategies. Molecular Biology and Evolution, 2020, 37, 1376-1386.	3.5	8
29	Functional and population genetic features of copy number variations in two dairy cattle populations. BMC Genomics, 2020, 21, 89.	1.2	19
30	Developments in genetic modification of cattle and implications for regulation, safety and traceability. Frontiers of Agricultural Science and Engineering, 2020, 7, 136.	0.9	7
31	Prioritizing sequence variants in conserved non-coding elements in the chicken genome using chCADD. , 2020, 16, e1009027.		0
32	Prioritizing sequence variants in conserved non-coding elements in the chicken genome using chCADD. , 2020, 16, e1009027.		0
33	Prioritizing sequence variants in conserved non-coding elements in the chicken genome using chCADD. , 2020, 16, e1009027.		0
34	Prioritizing sequence variants in conserved non-coding elements in the chicken genome using chCADD. , 2020, 16, e1009027.		0
35	Deleterious alleles in the context of domestication, inbreeding, and selection. Evolutionary Applications, 2019, 12, 6-17.	1.5	94
36	Ancient pigs reveal a near-complete genomic turnover following their introduction to Europe. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17231-17238.	3.3	101

#	Article	IF	CITATIONS
37	The genome of the live-bearing fish Heterandria formosa implicates a role of conserved vertebrate genes in the evolution of placental fish. BMC Evolutionary Biology, 2019, 19, 156.	3.2	7
38	Detection of a Frameshift Deletion in the SPTBN4 Gene Leads to Prevention of Severe Myopathy and Postnatal Mortality in Pigs. Frontiers in Genetics, 2019, 10, 1226.	1.1	6
39	Genomic relatedness and diversity of Swedish native cattle breeds. Genetics Selection Evolution, 2019, 51, 56.	1.2	31
40	Response to Perrier and Charmantier: On the importance of time scales when studying adaptive evolution. Evolution Letters, 2019, 3, 248-253.	1.6	1
41	The Genomic Complexity of a Large Inversion in Great Tits. Genome Biology and Evolution, 2019, 11, 1870-1881.	1.1	15
42	Genomic analysis on pygmy hog reveals extensive interbreeding during wild boar expansion. Nature Communications, 2019, 10, 1992.	5.8	38
43	Loss of function mutations in essential genes cause embryonic lethality in pigs. PLoS Genetics, 2019, 15, e1008055.	1.5	46
44	Deciphering the patterns of genetic admixture and diversity in southern European cattle using genomeâ€wide SNPs. Evolutionary Applications, 2019, 12, 951-963.	1.5	22
45	Exploring the unmapped DNA and RNA reads in a songbird genome. BMC Genomics, 2019, 20, 19.	1.2	21
46	The effects of recent changes in breeding preferences on maintaining traditional Dutch chicken genomic diversity. Heredity, 2018, 121, 564-578.	1.2	29
47	A highâ€density <scp>SNP</scp> chip for genotyping great tit (<i>Parus major</i>) populations and its application to studying the genetic architecture of exploration behaviour. Molecular Ecology Resources, 2018, 18, 877-891.	2.2	36
48	Genomeâ€wide population structure and admixture analysis reveals weak differentiation among Ugandan goat breeds. Animal Genetics, 2018, 49, 59-70.	0.6	34
49	The impact of genome editing on the introduction of monogenic traits in livestock. Genetics Selection Evolution, 2018, 50, 18.	1.2	21
50	A survey of functional genomic variation in domesticated chickens. Genetics Selection Evolution, 2018, 50, 17.	1.2	27
51	CNVs are associated with genomic architecture in a songbird. BMC Genomics, 2018, 19, 195.	1.2	11
52	Balancing selection on a recessive lethal deletion with pleiotropic effects on two neighboring genes in the porcine genome. PLoS Genetics, 2018, 14, e1007661.	1.5	39
53	Genome-Wide Characterization of Selection Signatures and Runs of Homozygosity in Ugandan Goat Breeds. Frontiers in Genetics, 2018, 9, 318.	1.1	126
54	A Novel Loss-of-Function Variant in Transmembrane Protein 263 (TMEM263) of Autosomal Dwarfism in Chicken. Frontiers in Genetics, 2018, 9, 193.	1.1	17

#	Article	IF	CITATIONS
55	Early and late feathering in turkey and chicken: same gene but different mutations. Genetics Selection Evolution, 2018, 50, 7.	1.2	11
56	Gene networks for total number born in pigs across divergent environments. Mammalian Genome, 2017, 28, 426-435.	1.0	3
57	Recent natural selection causes adaptive evolution of an avian polygenic trait. Science, 2017, 358, 365-368.	6.0	161
58	Oncopig Soft-Tissue Sarcomas Recapitulate Key Transcriptional Features of Human Sarcomas. Scientific Reports, 2017, 7, 2624.	1.6	27
59	Genetic origin, admixture and population history of aurochs (Bos primigenius) and primitive European cattle. Heredity, 2017, 118, 169-176.	1.2	80
60	Distinguishing migration events of different timing for wild boar in the Balkans. Journal of Biogeography, 2017, 44, 259-270.	1.4	14
61	Genome-wide SNP data unveils the globalization of domesticated pigs. Genetics Selection Evolution, 2017, 49, 71.	1.2	114
62	Distribution and Functionality of Copy Number Variation across European Cattle Populations. Frontiers in Genetics, 2017, 8, 108.	1.1	65
63	A history of hybrids? Genomic patterns of introgression in the True Geese. BMC Evolutionary Biology, 2017, 17, 201.	3.2	47
64	A systematic survey to identify lethal recessive variation in highly managed pig populations. BMC Genomics, 2017, 18, 858.	1.2	37
65	The Use of Genomics in Conservation Management of the Endangered Visayan Warty Pig (<i>Sus) Tj ETQq1 1 0</i>	.784314 rg 0.8	gBT_/Overlock
66	Impact of neonatal iron deficiency on hippocampal DNA methylation and gene transcription in a porcine biomedical model of cognitive development. BMC Genomics, 2016, 17, 856.	1.2	44
67	After genome-wide association studies: Gene networks elucidating candidate genes divergences for number of teats across two pig populations1. Journal of Animal Science, 2016, 94, 1446-1458.	0.2	11
68	A tree of geese: A phylogenomic perspective on the evolutionary history of True Geese. Molecular Phylogenetics and Evolution, 2016, 101, 303-313.	1.2	39
69	Genome-wide single nucleotide polymorphism (SNP) identification and characterization in a non-model organism, the African buffalo (Syncerus caffer), using next generation sequencing. Mammalian Biology, 2016, 81, 595-603.	0.8	11
70	<scp>GO</scp> â€ <scp>FAANG</scp> meeting: a Gathering On Functional Annotation of <scp>An</scp> imal Genomes. Animal Genetics, 2016, 47, 528-533.	0.6	65
71	Evidence for adaptation of porcine Toll-like receptors. Immunogenetics, 2016, 68, 179-189.	1.2	7
72	A decade of pig genome sequencing: a window on pig domestication and evolution. Genetics Selection Evolution, 2016, 48, 23.	1.2	102

#	Article	IF	CITATIONS
73	Evolutionary patterns of Toll-like receptor signaling pathway genes in the Suidae. BMC Evolutionary Biology, 2016, 16, 33.	3.2	8
74	Accuracy of genomic prediction using imputed wholeâ€genome sequence data in white layers. Journal of Animal Breeding and Genetics, 2016, 133, 167-179.	0.8	61
75	Evolutionary signals of selection on cognition from the great tit genome and methylome. Nature Communications, 2016, 7, 10474.	5.8	172
76	The Evolution of Suidae. Annual Review of Animal Biosciences, 2016, 4, 61-85.	3.6	85
77	Genomic diversity and differentiation of a managed island wild boar population. Heredity, 2016, 116, 60-67.	1.2	41
78	Replicated analysis of the genetic architecture of quantitative traits in two wild great tit populations. Molecular Ecology, 2015, 24, 6148-6162.	2.0	61
79	Adult porcine genome-wide DNA methylation patterns support pigs as a biomedical model. BMC Genomics, 2015, 16, 743.	1.2	96
80	Accuracy of Predicted Genomic Breeding Values in Purebred and Crossbred Pigs. G3: Genes, Genomes, Genetics, 2015, 5, 1575-1583.	0.8	41
81	Adaptive Evolution of Toll-Like Receptors (TLRs) in the Family Suidae. PLoS ONE, 2015, 10, e0124069.	1.1	22
82	Accuracy of genomic prediction using deregressed breeding values estimated from purebred and crossbred offspring phenotypes in pigs1. Journal of Animal Science, 2015, 93, 3313-3321.	0.2	10
83	Copy number variation in the speciation of pigs: a possible prominent role for olfactory receptors. BMC Genomics, 2015, 16, 330.	1.2	85
84	Using genome-wide measures of coancestry to maintain diversity and fitness in endangered and domestic pig populations. Genome Research, 2015, 25, 970-981.	2.4	77
85	Population-level consequences of complementary sex determination in a solitary parasitoid. BMC Evolutionary Biology, 2015, 15, 98.	3.2	15
86	Artificial selection on introduced Asian haplotypes shaped the genetic architecture in European commercial pigs. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20152019.	1.2	25
87	Evolution of Tibetan wild boars. Nature Genetics, 2015, 47, 188-189.	9.4	10
88	TRES: Identification of Discriminatory and Informative SNPs from Population Genomic Data: Figure 1 Journal of Heredity, 2015, 106, 672-676.	1.0	26
89	Third Report on Chicken Genes and Chromosomes 2015. Cytogenetic and Genome Research, 2015, 145, 78-179.	0.6	97
90	A genome-wide scan for signatures of directional selection in domesticated pigs. BMC Genomics, 2015, 16, 130.	1.2	67

#	Article	IF	CITATIONS
91	Coordinated international action to accelerate genome-to-phenome with FAANG, the Functional Annotation of Animal Genomes project. Genome Biology, 2015, 16, 57.	3.8	331
92	Accuracy of imputation using the most common sires as reference population in layer chickens. BMC Genetics, 2015, 16, 101.	2.7	15
93	The Genome of Winter Moth (<i>Operophtera brumata</i>) Provides a Genomic Perspective on Sexual Dimorphism and Phenology. Genome Biology and Evolution, 2015, 7, 2321-2332.	1.1	70
94	Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes. Nature Genetics, 2015, 47, 1141-1148.	9.4	263
95	A Genetic Linkage Map of Sole (Solea solea): A Tool for Evolutionary and Comparative Analyses of Exploited (Flat)Fishes. PLoS ONE, 2014, 9, e115040.	1.1	17
96	Replicated high-density genetic maps of two great tit populations reveal fine-scale genomic departures from sex-equal recombination rates. Heredity, 2014, 112, 307-316.	1.2	53
97	Identification of genes regulating growth and fatness traits in pig through hypothalamic transcriptome analysis. Physiological Genomics, 2014, 46, 195-206.	1.0	56
98	Identification of speciesâ€specific novel transcripts in pig reproductive tissues using <scp>RNA</scp> â€seq. Animal Genetics, 2014, 45, 198-204.	0.6	22
99	Testing models of speciation from genome sequences: divergence and asymmetric admixture in <scp>I</scp> sland <scp>S</scp> outhâ€ <scp>E</scp> ast <scp>A</scp> sian <i><scp>S</scp>us</i> species during the <scp>P</scp> lioâ€ <scp>P</scp> leistocene climatic fluctuations. Molecular Ecology, 2014, 23, 5566-5574.	2.0	32
100	On the relationship between an Asian haplotype on chromosome 6 that reduces androstenone levels in boars and the differential expression of SULT2A1 in the testis. BMC Genetics, 2014, 15, 4.	2.7	7
101	Systematic differences in the response of genetic variation to pedigree and genome-based selection methods. Heredity, 2014, 113, 503-513.	1.2	34
102	Whole-genome sequence analysis reveals differences in population management and selection of European low-input pig breeds. BMC Genomics, 2014, 15, 601.	1.2	44
103	Untangling the hybrid nature of modern pig genomes: a mosaic derived from biogeographically distinct and highly divergent <i>Sus scrofa</i> populations. Molecular Ecology, 2014, 23, 4089-4102.	2.0	52
104	Genomic analysis reveals selection for Asian genes in European pigs following human-mediated introgression. Nature Communications, 2014, 5, 4392.	5.8	137
105	Asian lowâ€androstenone haplotype on pig chromosome 6 does not unfavorably affect production and reproduction traits. Animal Genetics, 2014, 45, 874-877.	0.6	1
106	Hybrid origin of European commercial pigs examined by an in-depth haplotype analysis on chromosome 1. Frontiers in Genetics, 2014, 5, 442.	1.1	19
107	Genomeâ€wide single nucleotide polymorphism analysis reveals recent genetic introgression from domestic pigs into Northwest European wild boar populations. Molecular Ecology, 2013, 22, 856-866.	2.0	117
108	Evolutionary dynamics of copy number variation in pig genomes in the context of adaptation and domestication. BMC Genomics, 2013, 14, 449.	1.2	118

#	Article	IF	CITATIONS
109	Dissecting structural and nucleotide genome-wide variation in inbred Iberian pigs. BMC Genomics, 2013, 14, 148.	1.2	45
110	Large scale variation in DNA copy number in chicken breeds. BMC Genomics, 2013, 14, 398.	1.2	55
111	Porcine colonization of the Americas: a 60k SNP story. Heredity, 2013, 110, 321-330.	1.2	58
112	The duck genome and transcriptome provide insight into an avian influenza virus reservoir species. Nature Genetics, 2013, 45, 776-783.	9.4	327
113	Signatures of Diversifying Selection in European Pig Breeds. PLoS Genetics, 2013, 9, e1003453.	1.5	228
114	Pig Domestication and Human-Mediated Dispersal in Western Eurasia Revealed through Ancient DNA and Geometric Morphometrics. Molecular Biology and Evolution, 2013, 30, 824-832.	3.5	196
115	Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus. Genome Biology, 2013, 14, R107.	13.9	137
116	Genetic consequences of breaking migratory traditions in barnacle geese <i>Branta leucopsis</i> . Molecular Ecology, 2013, 22, 5835-5847.	2.0	40
117	Conservation genomic analysis of domestic and wild pig populations from the Iberian Peninsula. BMC Genetics, 2013, 14, 106.	2.7	87
118	Regions of Homozygosity in the Porcine Genome: Consequence of Demography and the Recombination Landscape. PLoS Genetics, 2012, 8, e1003100.	1.5	266
119	Genetic correlation between heart ratio and body weight as a function of ascites frequency in broilers split up into sex and health status. Poultry Science, 2012, 91, 556-564.	1.5	13
120	Domesticated species form a treasure-trove for molecular characterization of Mendelian traits by exploiting the specific genetic structure of these species in across-breed genome wide association studies. Heredity, 2012, 109, 1-3.	1.2	9
121	Strong signatures of selection in the domestic pig genome. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19529-19536.	3.3	548
122	Centromere positions in chicken and Japanese quail chromosomes: de novo centromere formation versus pericentric inversions. Chromosome Research, 2012, 20, 1017-1032.	1.0	33
123	Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 2012, 491, 393-398.	13.7	1,190
124	Widespread horizontal genomic exchange does not erode species barriers among sympatric ducks. BMC Evolutionary Biology, 2012, 12, 45.	3.2	46
125	Whole genome SNP discovery and analysis of genetic diversity in Turkey (Meleagris gallopavo). BMC Genomics, 2012, 13, 391.	1.2	63
126	Development of a genetic tool for product regulation in the diverse British pig breed market. BMC Genomics, 2012, 13, 580.	1.2	35

#	Article	IF	CITATIONS
127	A high density recombination map of the pig reveals a correlation between sex-specific recombination and GC content. BMC Genomics, 2012, 13, 586.	1.2	150
128	Signatures of Selection in the Genomes of Commercial and Non-Commercial Chicken Breeds. PLoS ONE, 2012, 7, e32720.	1.1	77
129	The design and crossâ€population application of a genomeâ€wide SNP chip for the great tit <i>Parus major</i> . Molecular Ecology Resources, 2012, 12, 753-770.	2.2	56
130	SNP marker detection and genotyping in tilapia. Molecular Ecology Resources, 2012, 12, 932-941.	2.2	32
131	The Imprinted Gene DIO3 Is a Candidate Gene for Litter Size in Pigs. PLoS ONE, 2012, 7, e31825.	1.1	35
132	The Development of a Genome Wide SNP Set for the Barnacle Goose Branta leucopsis. PLoS ONE, 2012, 7, e38412.	1.1	22
133	Prediction of Altered 3â€2- UTR miRNA-Binding Sites from RNA-Seq Data: The Swine Leukocyte Antigen Complex (SLA) as a Model Region. PLoS ONE, 2012, 7, e48607.	1.1	15
134	The distal end of porcine chromosome 6p is involved in the regulation of skatole levels in boars. BMC Genetics, 2011, 12, 35.	2.7	20
135	Genome wide SNP discovery, analysis and evaluation in mallard (Anas platyrhynchos). BMC Genomics, 2011, 12, 150.	1.2	63
136	Genome-Wide Footprints of Pig Domestication and Selection Revealed through Massive Parallel Sequencing of Pooled DNA. PLoS ONE, 2011, 6, e14782.	1.1	135
137	Regional Regulation of Transcription in the Bovine Genome. PLoS ONE, 2011, 6, e20413.	1.1	1
138	East Asian contributions to Dutch traditional and western commercial chickens inferred from mtDNA analysis. Animal Genetics, 2011, 42, 125-133.	0.6	32
139	Identification of high utility SNPs for population assignment and traceability purposes in the pig using high-throughput sequencing. Animal Genetics, 2011, 42, 613-620.	0.6	49
140	Partial short-read sequencing of a highly inbred Iberian pig and genomics inference thereof. Heredity, 2011, 107, 256-264.	1.2	16
141	Whole genome QTL mapping for growth, meat quality and breast meat yield traits in turkey. BMC Genetics, 2011, 12, 61.	2.7	12
142	Number and mode of inheritance of QTL influencing backfat thickness on SSC2p in Sino-European pig pedigrees. Genetics Selection Evolution, 2011, 43, 11.	1.2	6
143	Genetic variances, heritabilities and maternal effects on body weight, breast meat yield, meat quality traits and the shape of the growth curve in turkey birds. BMC Genetics, 2011, 12, 14.	2.7	31
144	The development and characterization of a 60K SNP chip for chicken. BMC Genomics, 2011, 12, 274.	1.2	185

#	Article	IF	CITATIONS
145	Structural variation in the chicken genome identified by paired-end next-generation DNA sequencing of reduced representation libraries. BMC Genomics, 2011, 12, 94.	1.2	25
146	Combining two Meishan F2 crosses improves the detection of QTL on pig chromosomes 2, 4 and 6. Genetics Selection Evolution, 2010, 42, 42.	1.2	12
147	Regional regulation of transcription in the chicken genome. BMC Genomics, 2010, 11, 28.	1.2	7
148	Pig genome sequence - analysis and publication strategy. BMC Genomics, 2010, 11, 438.	1.2	132
149	A SNP based linkage map of the turkey genome reveals multiple intrachromosomal rearrangements between the Turkey and Chicken genomes. BMC Genomics, 2010, 11, 647.	1.2	35
150	Regional differences in recombination hotspots between two chicken populations. BMC Genetics, 2010, 11, 11.	2.7	47
151	A genome-wide association study on androstenone levels in pigs reveals a cluster of candidate genes on chromosome 6. BMC Genetics, 2010, 11, 42.	2.7	96
152	Genomeâ€wide SNP detection in the great tit <i>Parus major</i> using high throughput sequencing. Molecular Ecology, 2010, 19, 89-99.	2.0	75
153	Segregation distortion in chicken and the evolutionary consequences of female meiotic drive in birds. Heredity, 2010, 105, 290-298.	1.2	33
154	Multi-Platform Next-Generation Sequencing of the Domestic Turkey (Meleagris gallopavo): Genome Assembly and Analysis. PLoS Biology, 2010, 8, e1000475.	2.6	348
155	Precise Centromere Positioning on Chicken Chromosome 3. Cytogenetic and Genome Research, 2010, 129, 310-313.	0.6	17
156	The use of blood gas parameters to predict ascites susceptibility in juvenile broilers. Poultry Science, 2010, 89, 1684-1691.	1.5	17
157	Gene Expression in Chicken Reveals Correlation with Structural Genomic Features and Conserved Patterns of Transcription in the Terrestrial Vertebrates. PLoS ONE, 2010, 5, e11990.	1.1	20
158	A high-density SNP-based linkage map of the chicken genome reveals sequence features correlated with recombination rate. Genome Research, 2009, 19, 510-519.	2.4	261
159	Design of a High Density SNP Genotyping Assay in the Pig Using SNPs Identified and Characterized by Next Generation Sequencing Technology. PLoS ONE, 2009, 4, e6524.	1.1	568
160	A Novel Activating Chicken IgY FcR Is Related to Leukocyte Receptor Complex (LRC) Genes but Is Located on a Chromosomal Region Distinct from the LRC and FcR Gene Clusters. Journal of Immunology, 2009, 182, 1533-1540.	0.4	35
161	Comparison of three microarray probe annotation pipelines: differences in strategies and their effect on downstream analysis. BMC Proceedings, 2009, 3, S1.	1.8	7
162	OligoRAP – an Oligo Re-Annotation Pipeline to improve annotation and estimate target specificity. BMC Proceedings, 2009, 3, S4.	1.8	9

#	Article	IF	CITATIONS
163	Microarray data mining using Bioconductor packages. BMC Proceedings, 2009, 3, S9.	1.8	9
164	Genetic and phenotypic relationships between blood gas parameters and ascites-related traits in broilers. Poultry Science, 2009, 88, 483-490.	1.5	19
165	Application of massive parallel sequencing to whole genome SNP discovery in the porcine genome. BMC Genomics, 2009, 10, 374.	1.2	44
166	Mining for single nucleotide polymorphisms in pig genome sequence data. BMC Genomics, 2009, 10, 4.	1.2	32
167	Large scale single nucleotide polymorphism discovery in unsequenced genomes using second generation high throughput sequencing technology: applied to turkey. BMC Genomics, 2009, 10, 479.	1.2	73
168	Alignment of the PiGMaP and USDA linkage maps of porcine chromosomes 3 and 9. Animal Genetics, 2009, 27, 355-357.	0.6	7
169	Comparison of linkage disequilibrium and haplotype diversity on macro- and microchromosomes in chicken. BMC Genetics, 2009, 10, 86.	2.7	72
170	Biodiversity of pig breeds from China and Europe estimated from pooled DNA samples: differences in microsatellite variation between two areas of domestication. Genetics Selection Evolution, 2008, 40, 103-28.	1.2	89
171	Whole genome comparative studies between chicken and turkey and their implications for avian genome evolution. BMC Genomics, 2008, 9, 168.	1.2	119
172	Partial duplication of the PRLR and SPEF2 genes at the late feathering locus in chicken. BMC Genomics, 2008, 9, 391.	1.2	102
173	Genome-wide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17312-17317.	3.3	230
174	Review of the initial validation and characterization of a 3K chicken SNP array. World's Poultry Science Journal, 2008, 64, 219-226.	1.4	30
175	Linkage Disequilibrium Decay and Haplotype Block Structure in the Pig. Genetics, 2008, 179, 569-579.	1.2	118
176	Biodiversity of pig breeds from China and Europe estimated from pooled DNA samples: differences in microsatellite variation between two areas of domestication. Genetics Selection Evolution, 2008, 40, 103-128.	1.2	84
177	Comparative analysis of chicken chromosome 28 provides new clues to the evolutionary fragility of gene-rich vertebrate regions. Genome Research, 2007, 17, 1603-1613.	2.4	46
178	Genetic variation at the tumour virus B locus in commercial and laboratory chicken populations assessed by a medium-throughput or a high-throughput assay. Avian Pathology, 2007, 36, 283-291.	0.8	11
179	In Silicoldentification and Mapping of Microsatellite Markers onSus ScrofaChromosome 4. Animal Biotechnology, 2007, 18, 251-261.	0.7	2
180	Extent of linkage disequilibrium in chicken. Cytogenetic and Genome Research, 2007, 117, 338-345.	0.6	47

#	Article	IF	CITATIONS
181	Sequencing and genomic annotation of the chicken <i>(Callus gallus)</i> Hox clusters, and mapping of evolutionarily conserved regions. Cytogenetic and Genome Research, 2007, 117, 110-119.	0.6	16
182	Genetic Resources, Genome Mapping and Evolutionary Genomics of the Pig <i>(Sus scrofa)</i> . International Journal of Biological Sciences, 2007, 3, 153-165.	2.6	100
183	Variance component analysis of quantitative trait loci for pork carcass composition and meat quality on SSC4 and SSC111. Journal of Animal Science, 2007, 85, 22-30.	0.2	13
184	FISH mapping of 57 BAC clones reveals strong conservation of synteny between Galliformes and Anseriformes. Animal Genetics, 2007, 38, 303-307.	0.6	25
185	Detection of QTL for innate: Non-specific antibody levels binding LPS and LTA in two independent populations of laying hens. Developmental and Comparative Immunology, 2006, 30, 659-666.	1.0	30
186	Genetic diversity within and between European pig breeds using microsatellite markers. Animal Genetics, 2006, 37, 189-198.	0.6	110
187	Genetic diversity in European pigs utilizing amplified fragment length polymorphism markers. Animal Genetics, 2006, 37, 232-238.	0.6	31
188	Corrections for: Detection of QTL for immune response to sheep red blood cells in laying hens. Animal Genetics, 2006, 37, 608-608.	0.6	2
189	FISH on avian lampbrush chromosomes produces higher resolution gene mapping. Genetica, 2006, 128, 241-251.	0.5	50
190	Genetic Diversity Analysis Using Lowly Polymorphic Dominant Markers: The Example of AFLP in Pigs. Journal of Heredity, 2006, 97, 244-252.	1.0	22
191	Chromosomal assignment of chicken clone contigs by extending the consensus linkage map. Animal Genetics, 2005, 36, 216-222.	0.6	5
192	Genetic mapping of quantitative trait loci affecting susceptibility in chicken to develop pulmonary hypertension syndrome. Animal Genetics, 2005, 36, 468-476.	0.6	31
193	Quantitative trait loci for behavioural traits in chickens. Livestock Science, 2005, 93, 95-103.	1.2	17
194	Confirmation of quantitative trait loci affecting fatness in chickens. Genetics Selection Evolution, 2005, 37, 215-28.	1.2	47
195	Comparative analysis of the natriuretic peptide precursor gene cluster in vertebrates reveals loss of ANF and retention of CNP-3 in chicken. Developmental Dynamics, 2005, 233, 1076-1082.	0.8	35
196	An assessment of European pig diversity using molecular markers: Partitioning of diversity among breeds. Conservation Genetics, 2005, 6, 729-741.	0.8	40
197	The Chicken Leukocyte Receptor Complex: A Highly Diverse Multigene Family Encoding at Least Six Structurally Distinct Receptor Types. Journal of Immunology, 2005, 175, 385-393.	0.4	88
198	ESTIMATION OF THE EXTENT OF LINKAGE DISEQUILIBRIUM IN SEVEN REGIONS OF THE PORCINE GENOME. Animal Biotechnology, 2005, 16, 41-54.	0.7	17

#	Article	IF	CITATIONS
199	Second report on chicken genes and chromosomes 2005. Cytogenetic and Genome Research, 2005, 109, 415-479.	0.6	136
200	Estimation of the extent of linkage disequilibrium in seven regions of the porcine genome. Animal Biotechnology, 2005, 16, 41-54.	0.7	6
201	Detection and Localization of Quantitative Trait Loci Affecting Fatness in Broilers. Poultry Science, 2004, 83, 295-301.	1.5	77
202	Quantitative Trait Loci for Body Weight in Layers Differ from Quantitative Trait Loci Specific for Antibody Responses to Sheep Red Blood Cells. Poultry Science, 2004, 83, 853-859.	1.5	28
203	Chicken Ig-Like Receptor B2, a Member of a Multigene Family, Is Mainly Expressed on B Lymphocytes, Recruits Both Src Homology 2 Domain Containing Protein Tyrosine Phosphatase (SHP)-1 and SHP-2, and Inhibits Proliferation. Journal of Immunology, 2004, 173, 7385-7393.	0.4	42
204	A radiation hybrid map of chicken chromosome 15. Animal Genetics, 2004, 35, 63-65.	0.6	13
205	A physical map of the chicken genome. Nature, 2004, 432, 761-764.	13.7	200
206	Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature, 2004, 432, 695-716.	13.7	2,421
207	A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature, 2004, 432, 717-722.	13.7	391
208	POSA: Perl Objects for DNA Sequencing Data Analysis. BMC Genomics, 2004, 5, 60.	1.2	5
209	A high-resolution radiation hybrid map of chicken chromosome 5 and comparison with human chromosomes. BMC Genomics, 2004, 5, 66.	1.2	21
210	Identification of QTLs Involved in Open-Field Behavior in Young and Adult Laying Hens. Behavior Genetics, 2004, 34, 325-333.	1.4	31
211	A radiation hybrid map of chicken Chromosome 4. Mammalian Genome, 2004, 15, 560-569.	1.0	12
212	Molecular Cytogenetic Definition of the Chicken Genome: The First Complete Avian Karyotype. Genetics, 2004, 166, 1367-1373.	1.2	122
213	The IGF2-intron3-G3072A substitution explains a major imprinted QTL effect on backfat thickness in a Meishan×European white pig intercross. Genetical Research, 2004, 84, 95-101.	0.3	70
214	Typing Single-Nucleotide Polymorphisms Using a Gel-Based Sequencer: A New Data Analysis Tool and Suggestions for Improved Efficiency. Molecular Biotechnology, 2003, 25, 283-288.	1.3	6
215	Comparative map between chicken Chromosome 15 and human chromosomal region 12q24 and 22q11-q12. Mammalian Genome, 2003, 14, 629-639.	1.0	11
216	ALC (adjacent to LMX1 in chick) is a novel dorsal limb mesenchyme marker. Gene Expression Patterns, 2003, 3, 735-741.	0.3	7

#	Article	IF	CITATIONS
217	Biodiversity of 52 chicken populations assessed by microsatellite typing of DNA pools. Genetics Selection Evolution, 2003, 35, 533-57.	1.2	209
218	Detection of QTL for immune response to sheep red blood cells in laying hens. Animal Genetics, 2003, 34, 422-428.	0.6	30
219	Development of a single nucleotide polymorphism map of porcine chromosomeÂ2. Animal Genetics, 2003, 34, 429-437.	0.6	19
220	A chondrogenesis-related lipocalin cluster includes a third new gene, CALÎ ³ . Gene, 2003, 305, 185-194.	1.0	14
221	Identification of quantitative trait loci for receiving pecks in young and adult laying hens. Poultry Science, 2003, 82, 1661-1667.	1.5	33
222	Integration of chicken genomic resources to enable whole-genome sequencing. Cytogenetic and Genome Research, 2003, 102, 297-303.	0.6	18
223	Cytogenetics, conserved synteny and evolution of chicken fucosyltransferase genes compared to human. Cytogenetic and Genome Research, 2003, 103, 111-121.	0.6	7
224	Mapping quantitative trait loci affecting feather pecking behavior and stress response in laying hens. Poultry Science, 2003, 82, 1215-1222.	1.5	85
225	Detection of different quantitative trait loci for antibody responses to keyhole lympet hemocyanin and Mycobacterium butyricum in two unrelated populations of laying hens. Poultry Science, 2003, 82, 1845-1852.	1.5	30
226	2003 Spring meeting of the WPSA French Branch. British Poultry Science, 2003, 44, 795-797.	0.8	4
227	Assignment of <i>FUT8</i> to chicken chromosome band 5q1.4 and to human chromosome 14q23.2→q24.1 by in situ hybridization. Conserved and compared synteny between human and chicken. Cytogenetic and Genome Research, 2002, 97, 234-238.	0.6	7
228	Assessing the contribution of breeds to genetic diversity in conservation schemes. Genetics Selection Evolution, 2002, 34, 613-33.	1.2	98
229	Comparative mapping of human Chromosome 19 with the chicken shows conserved synteny and gives an insight into chromosomal evolution. Mammalian Genome, 2002, 13, 310-315.	1.0	30
230	A comparative map of chicken chromosome 24 and human chromosome 11. Animal Genetics, 2002, 33, 205-210.	0.6	21
231	Improvement of the comparative map of chicken chromosome 13. Animal Genetics, 2002, 33, 249-254.	0.6	22
232	Porcine BAC derived microsatellites linked toADRBK1,CNTFandGALon SSC2. Animal Genetics, 2002, 33, 72-73.	0.6	4
233	A whole-genome scan for quantitative trait loci affecting teat number in pigs Journal of Animal Science, 2001, 79, 2320.	0.2	75
234	The Gene Orders on Human Chromosome 15 and Chicken Chromosome 10 Reveal Multiple Inter- and Intrachromosomal Rearrangements. Molecular Biology and Evolution, 2001, 18, 2102-2109.	3.5	39

#	Article	IF	CITATIONS
235	Localization to chicken Chromosome 5 of a novel locus determining salmonellosis resistance. Immunogenetics, 2001, 53, 786-791.	1.2	79
236	A high-resolution comparative RH map of porcine Chromosome (SSC) 2. Mammalian Genome, 2001, 12, 366-370.	1.0	28
237	Polymorphic microsatellites developed by cross-species amplifications in common pheasant breeds. Animal Genetics, 2001, 32, 222-225.	0.6	27
238	Improving the comparative map of SSC2p-q13 by sample sequencing of BAC clones. Animal Genetics, 2001, 32, 274-280.	0.6	9
239	Development of 112 unique expressed sequence tags from chicken liver using an arbitrarily primed reverse transcriptase-polymerase chain reaction and single strand conformation gel purification method. Animal Genetics, 2001, 32, 289-297.	0.6	17
240	Detection and characterization of quantitative trait loci for growth and reproduction traits in pigs. Livestock Science, 2001, 72, 185-198.	1.2	112
241	Detection of Genes on the Z-Chromosome Affecting Growth and Feathering in Broilers. Poultry Science, 2001, 80, 527-534.	1.5	17
242	Empirical Evaluation of Genetic Clustering Methods Using Multilocus Genotypes From 20 Chicken Breeds. Genetics, 2001, 159, 699-713.	1.2	306
243	Mapping of 16 ESTs expressed in the bovine mammary gland during lactation. Mammalian Genome, 2000, 11, 320-325.	1.0	5
244	Two-dimensional screening of the Wageningen chicken BAC library. Mammalian Genome, 2000, 11, 360-363.	1.0	141
245	Fine mapping and imprinting analysis for fatness trait QTLs in pigs. Mammalian Genome, 2000, 11, 656-661.	1.0	103
246	The X Chromosome harbors quantitative trait loci for backfat thickness and intramuscular fat content in pigs. Mammalian Genome, 2000, 11, 800-802.	1.0	44
247	First report on chicken genes and chromosomes 2000. Cytogenetic and Genome Research, 2000, 90, 169-218.	0.6	299
248	Genome-wide scan for body composition in pigs reveals important role of imprinting. Proceedings of the United States of America, 2000, 97, 7947-7950.	3.3	264
249	Combined Analyses of Data From Quantitative Trait Loci Mapping Studies: Chromosome 4 Effects on Porcine Growth and Fatness. Genetics, 2000, 155, 1369-1378.	1.2	128
250	A consensus linkage map of the chicken genome. Genome Research, 2000, 10, 137-47.	2.4	357
251	Whole genome scan in chickens for quantitative trait loci affecting carcass traits. Poultry Science, 1999, 78, 1091-1099.	1.5	72
252	Whole genome scan in chickens for quantitative trait loci affecting growth and feed efficiency. Poultry Science, 1999, 78, 15-23.	1.5	114

#	Article	IF	CITATIONS
253	Multicolour fluorescent detection and mapping of AFLP markers in chicken (Gallus domesticus). Animal Genetics, 1999, 30, 274-285.	0.6	39
254	Extending the chicken-human comparative map by placing 15 genes on the chicken linkage map. Animal Genetics, 1999, 30, 418-422.	0.6	18
255	Detection of Quantitative Trait Loci for Backfat Thickness and Intramuscular Fat Content in Pigs (Sus) Tj ETQq1	1 0,784314 1.2	1 rgBT /Overl 276
256	Nucleotide sequence of the chicken HMGI-C cDNA and expression of the HMGI-C and IGF1 genes in autosomal dwarf chicken embryos. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1399, 83-87.	2.4	16
257	Developing microsatellite markers from cDNA: a tool for adding expressed sequence tags to the genetic linkage map of the chicken. Animal Genetics, 1998, 29, 85-90.	0.6	25
258	Whole genome scan for quantitative trait loci affecting body weight in chickens using a three generation design. Livestock Science, 1998, 54, 133-150.	1.2	83
259	A Comprehensive Microsatellite Linkage Map of the Chicken Genome. Genomics, 1998, 49, 265-274.	1.3	111
260	The HMGI-C gene is a likely candidate for the autosomal dwarf locus in the chicken. , 1998, 89, 295-300.		34
261	Genetic Mapping of Quantitative Trait Loci Affecting Susceptibility to Marek's Disease Virus Induced Tumors in F2 Intercross Chickens. Genetics, 1998, 148, 349-360.	1.2	156
262	Bulked segregant analysis using microsatellites: mapping of the dominant white locus in the chicken. Poultry Science, 1997, 76, 386-391.	1.5	22
263	QTL Mapping in chicken using a three generation full sib family structure of an extreme broiler X broiler cross. Animal Biotechnology, 1997, 8, 41-46.	0.7	29
264	Microsatellite markers in common carp (Cyprinus carpio L.). Animal Genetics, 1997, 28, 129-134.	0.6	168
265	A consensus linkage map for swine chromosome 7. Animal Genetics, 1997, 28, 223-229.	0.6	5
266	New microsatellite markers in chicken optimized for automated fluorescent genotyping. Animal Genetics, 1997, 28, 427-437.	0.6	60
267	FISH mapping of theα-S2 casein gene on river buffalo and cattle chromosomes identifies a nomenclature discrepancy in the bovine karyotype. Chromosome Research, 1996, 4, 159-162.	1.0	16
268	Preliminary Linkage Map of the Chicken (Gallus domesticus) Genome Based on Microsatellite Markers: 77 New Markers Mapped. Poultry Science, 1996, 75, 746-754.	1.5	79
269	Microsatellite Polymorphism in Commercial Broiler and Layer Lines Estimated Using Pooled Blood Samples. Poultry Science, 1996, 75, 904-909.	1.5	69
270	Development and mapping of polymorphic microsatellite markers derived from a chicken brain cDNA library. Animal Genetics, 1996, 27, 229-234.	0.6	22

#	Article	IF	CITATIONS
271	The PiGMaP consortium linkage map of the pig (Sus scrofa). Mammalian Genome, 1995, 6, 157-175.	1.0	475
272	Characterization of a GlyCAM1-like gene (glycosylation-dependent cell adhesion molecule 1) which is highly and specifically expressed in the lactating bovine mammary gland. Gene, 1995, 158, 189-195.	1.0	41
273	Functional genes mapped on the chicken genome. Animal Genetics, 1995, 26, 73-78.	0.6	32
274	Confirmation that the casein gene cluster resides on cattle Chromosome 6. Mammalian Genome, 1994, 5, 524-524.	1.0	16
275	Regulation of expression of milk protein genes: a review. Livestock Science, 1994, 38, 61-78.	1.2	40
276	New Microsatellite Markers on the Linkage Map of the Chicken Genome. Journal of Heredity, 1994, 85, 410-413.	1.0	30
277	Overproduction of bovine \hat{l}^2 -casein in Escherichia coli and engineering of its main chymosin cleavage site. Protein Engineering, Design and Selection, 1993, 6, 763-770.	1.0	15
278	The complete sequence of the gene encoding bovine $\hat{I}\pm 2$ -casein. Gene, 1993, 123, 187-193.	1.0	71
279	Highly polymorphic microsatellite markers in poultry. Animal Genetics, 1993, 24, 441-443.	0.6	29
280	Multiple ocatamer binding sites in the promoter region of the bovineαs2-Casein gene. Nucleic Acids Research, 1992, 20, 4311-4318.	6.5	51
281	The nucleotide sequence of the bovine MHC class II alpha genes:DRA, DQA, andDYA. Immunogenetics, 1990, 31, 29-36.	1.2	103
282	The nucleotide sequence of bovine MHC class IIDQB andDRB genes. Immunogenetics, 1990, 31, 37-44.	1.2	120
283	Homologies between the major histocompatibility complex of man and cattle: Consequences for disease resistance and susceptibility. Veterinary Quarterly, 1990, 12, 202-211.	3.0	3
284	Two genes involved in penicillin biosynthesis are linked in a 5.1 kb Sall fragment in the genome of Penicillium chrysogenum. Molecular Genetics and Genomics, 1989, 218, 572-576.	2.4	47
285	Cloning and characterization of the acyl-coenzyme A: 6-aminopenicillanic-aid-acyltransferase gene of Penicillium chrysogenum. Gene, 1989, 83, 291-300.	1.0	130
286	The requirements for a high level of transposition of bacteriophage mu. Journal of Cell Science, 1987, 1987, 41-50.	1.2	1
287	Interactions of the transposase with the ends of Mu: formation of specific nucleoprotein structures and non-cooperative binding of the transposase to its binding sites. Nucleic Acids Research, 1987, 15, 8831-8844.	6.5	2
288	Analysis of the ends of bacteriophage Mu using site-directed mutagenesis. Journal of Molecular Biology, 1986, 189, 597-602.	2.0	28

#	Article	IF	CITATIONS
289	DNA sequences at the ends of the genome of bacteriophage Mu essential for transposition Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 2087-2091.	3.3	57
290	Mapping of a site for packaging of bacteriophage Mu DNA. Virology, 1985, 144, 520-522.	1.1	29
291	Comparison of the crystallin mRNA populations from rat, calf and duck lens. Evidence for a longer αA2-mRNA and two distinct αB2-mRNAs in the birds. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1985, 824, 284-294.	2.4	11
292	Metabolism of benzidine-based dyes and the appearance of mutagenic metabolites in urine of rats after oral or intraperitoneal administration. Toxicology, 1984, 31, 271-282.	2.0	24
293	A Genomic Perspective on Wild Boar Demography and Evolution. , 0, , 376-387.		3