Xiaogang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7412502/publications.pdf

Version: 2024-02-01

226 papers 20,660 citations

9234 74 h-index 138 g-index

233 all docs 233 docs citations

times ranked

233

19314 citing authors

#	Article	IF	CITATIONS
1	Thermally Chargeable Proton Capacitor Based on Redoxâ€Active Effect for Energy Storage and Lowâ€Grade Heat Conversion. Energy and Environmental Materials, 2023, 6, .	7.3	4
2	Recent Progress and Prospects on Dendriteâ€free Engineerings for Aqueous Zinc Metal Anodes. Energy and Environmental Materials, 2023, 6, .	7.3	15
3	Targeted Deposition in a Lithiophilic Silverâ€Modified 3D Cu Host for Lithiumâ€Metal Anodes. Energy and Environmental Materials, 2023, 6, .	7.3	11
4	Encapsulating silicon particles by graphitic carbon enables High-performance Lithium-ion batteries. Journal of Colloid and Interface Science, 2022, 607, 1562-1570.	5.0	13
5	A Fast Protonâ€Induced Pseudocapacitive Supercapacitor with High Energy and Power Density. Advanced Functional Materials, 2022, 32, 2107720.	7.8	53
6	Hierarchical porous carbon derived from elm bark mucus for efficient energy storage and conversion. Materials Chemistry and Physics, 2022, 277, 125450.	2.0	2
7	Zinc ion thermal charging cell for low-grade heat conversion and energy storage. Nature Communications, 2022, 13, 132.	5.8	37
8	Fabrication of a Covalent Triazine Framework Functional Interlayer for High-Performance Lithium–Sulfur Batteries. Nanomaterials, 2022, 12, 255.	1.9	7
9	Revisiting Charge Storage Mechanism of Reduced Graphene Oxide in Zinc Ion Hybrid Capacitor beyond the Contribution of Oxygenâ€Containing Groups. Advanced Functional Materials, 2022, 32, .	7.8	45
10	A Highâ€Voltage Lithiumâ€Metal Batteries Electrolyte Based on Fullyâ€Methylated Pivalonitrile. Batteries and Supercaps, 2022, 5, .	2.4	2
11	Revealing the multiple cathodic and anodic involved charge storage mechanism in an FeSe ₂ cathode for aluminium-ion batteries by <i>in situ</i> magnetometry. Energy and Environmental Science, 2022, 15, 311-319.	15.6	53
12	A Facile Surface Passivation Method to Stabilized Lithium Metal Anodes Facilitate the Practical Application of Quasiâ€Solidâ€State Batteries. Advanced Materials Interfaces, 2022, 9, .	1.9	6
13	Investigations on niobium tungsten oxide thin films for optical modulation. Journal of Materials Science, 2022, 57, 5361-5373.	1.7	3
14	Thermally Chargeable Ammoniumâ€ion Capacitor for Energy Storage and Lowâ€Grade Heat Harvesting. Batteries and Supercaps, 2022, 5, .	2.4	7
15	Three-Dimensional Cross-Linked Binder Based on Ionic Bonding for a High-Performance SiO _{<i>x</i>} Anode in Lithium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 4788-4795.	2.5	7
16	A novel covalent organic framework with high-density imine groups for lithium storage as anode material in lithium-ion batteries. Journal of Materials Science, 2022, 57, 9980-9991.	1.7	18
17	Pore-Size-Dependent Capacitance and Charging Dynamics of Nanoporous Carbons in Aqueous Electrolytes. Journal of Physical Chemistry C, 2022, 126, 6854-6862.	1.5	17
18	MnO2/carbon nanotube free-standing electrode recycled from spent manganese-oxygen battery as high-performance supercapacitor material. Journal of Materials Science, 2022, 57, 8818-8827.	1.7	11

#	Article	IF	Citations
19	Dual stabilization in potassium Prussian blue and cathode/electrolyte interface enables advanced potassium-ion full-cells. Journal of Colloid and Interface Science, 2022, 623, 1-8.	5.0	15
20	Enhanced Reaction Kinetics of N–MnO ₂ Nanosheets with Oxygen Vacancies via Mild NH ₃ ·H ₂ O Bath Treatment for Advanced Aqueous Supercapacitors. ACS Applied Energy Materials, 2022, 5, 7490-7502.	2.5	12
21	Pencil Drawing Stable Interface for Reversible and Durable Aqueous Zincâ€ion Batteries. Advanced Functional Materials, 2021, 31, 2006495.	7.8	153
22	Influence of applied voltage on optimal performance and durability of tungsten and vanadium oxide co-sputtered thin films for electrochromic applications. Applied Surface Science, 2021, 536, 147873.	3.1	14
23	Fabrication of the Oxygen Vacancy Amorphous MnO ₂ /Carbon Nanotube as Cathode for Advanced Aqueous Zinc″on Batteries. Energy Technology, 2021, 9, 2000769.	1.8	33
24	Nanoarchitectured porous carbons derived from ZIFs toward highly sensitive and selective QCM sensor for hazardous aromatic vapors. Journal of Hazardous Materials, 2021, 405, 124248.	6.5	36
25	Conductive Metal–Organic Framework for High Energy Sodium-Ion Hybrid Capacitors. ACS Applied Energy Materials, 2021, 4, 1568-1574.	2.5	25
26	Operando Magnetometry Probing the Charge Storage Mechanism of CoO Lithiumâ€lon Batteries. Advanced Materials, 2021, 33, e2006629.	11.1	80
27	Deep Eutectic Solventâ€Induced Polyacrylonitrileâ€Derived Hierarchical Porous Carbon for Zincâ€Ion Hybrid Supercapacitors. Batteries and Supercaps, 2021, 4, 680-686.	2.4	10
28	Lithium″on Batteries: Operando Magnetometry Probing the Charge Storage Mechanism of CoO Lithium″on Batteries (Adv. Mater. 12/2021). Advanced Materials, 2021, 33, 2170093.	11.1	4
29	Composite Electrolytes Based on Poly(Ethylene Oxide) and Lithium Borohydrides for All-Solid-State Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 5396-5404.	3.2	33
30	Tailored Hierarchical Porous Carbon through Template Modification for Antifreezing Quasiâ€Solidâ€State Zinc Ion Hybrid Supercapacitors. Advanced Energy and Sustainability Research, 2021, 2, 2000112.	2.8	9
31	3D Printed Lithium-Metal Full Batteries Based on a High-Performance Three-Dimensional Anode Current Collector. ACS Applied Materials & Samp; Interfaces, 2021, 13, 24785-24794.	4.0	38
32	Stabilization of a 4.7â€V Highâ€Voltage Nickelâ€Rich Layered Oxide Cathode for Lithiumâ€Ion Batteries through Boronâ€Based Surface Residual Lithiumâ€Tuned Interface Modification Engineering. ChemElectroChem, 2021, 8, 2014-2021.	1.7	11
33	Organosiliconâ€Based Functional Electrolytes for Highâ€Performance Lithium Batteries. Advanced Energy Materials, 2021, 11, 2101057.	10.2	26
34	A Thermally Chargeable Hybrid Supercapacitor with High Power Density for Directly Converting Heat to Electricity. ACS Applied Energy Materials, 2021, 4, 6055-6061.	2.5	11
35	Regulation of SEI Formation by Anion Receptors to Achieve Ultraâ€Stable Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 19232-19240.	7.2	66
36	Regulation of SEI Formation by Anion Receptors to Achieve Ultraâ€Stable Lithiumâ€Metal Batteries. Angewandte Chemie, 2021, 133, 19381-19389.	1.6	13

#	Article	IF	CITATIONS
37	Electrospinning oxygen-vacant TiNb24O62 nanowires simultaneously boosts electrons and ions transmission capacities toward superior lithium storage. Electrochimica Acta, 2021, 388, 138656.	2.6	14
38	Serosa-Mimetic Nanoarchitecture Membranes for Highly Efficient Osmotic Energy Generation. Journal of the American Chemical Society, 2021, 143, 16206-16216.	6.6	70
39	High-Energy Density Aqueous Zinc–Iodine Batteries with Ultra-long Cycle Life Enabled by the Znl ₂ Additive. ACS Sustainable Chemistry and Engineering, 2021, 9, 13268-13276.	3.2	29
40	Nb ₃ O ₇ F mesocrystals: orientation formation and application in lithium ion capacitors. CrystEngComm, 2021, 23, 6012-6022.	1.3	2
41	Polydopamine grafted cross-linked polyacrylamide as robust binder for SiO/C anode toward high-stability lithium-ion battery. Journal of Materials Science, 2021, 56, 6337-6348.	1.7	11
42	Phenyl-Modified Carbon Nitride Quantum Nanoflakes for Ultra-Highly Selective Sensing of Formic Acid: A Combined Experimental by QCM and Density Functional Theory Study. ACS Applied Materials & Samp; Interfaces, 2021, 13, 48595-48610.	4.0	22
43	Facile <i>In Situ</i> Cross-Linked Robust Three-Dimensional Binder for High-Performance SiO _{<i>x</i>} Anodes in Lithium-Ion Batteries. ACS Applied Materials & Diterfaces, 2021, 13, 49313-49321.	4.0	16
44	Charge Storage Mechanism of an Anthraquinone-Derived Porous Covalent Organic Framework with Multiredox Sites as Anode Material for Lithium-Ion Battery. ACS Applied Energy Materials, 2021, 4, 11377-11385.	2.5	31
45	Stabilizing Li Plating by a Fluorinated Hybrid Protective Layer. ACS Applied Energy Materials, 2021, 4, 14407-14414.	2.5	3
46	Biomass-derived porous carbon electrodes for high-performance supercapacitors. Journal of Materials Science, 2020, 55, 5166-5176.	1.7	60
47	Self-supported TiN nanorod array/carbon textile as a lithium host that induces dendrite-free lithium plating with high rates and long cycle life. Journal of Materials Chemistry A, 2020, 8, 3293-3299.	5. 2	5
48	Nanohollow Carbon for Rechargeable Batteries: Ongoing Progresses and Challenges. Nano-Micro Letters, 2020, 12, 183.	14.4	45
49	Encapsulating Oxygenâ€Deficient TiNb ₂₄ O ₆₂ Microspheres by Nâ€Doped Carbon Nanolayer Boosts Capacity and Stability of Lithiumâ€Ion Battery. Batteries and Supercaps, 2020, 3, 1360-1369.	2.4	10
50	Emerging Potassiumâ€ion Hybrid Capacitors. ChemSusChem, 2020, 13, 5837-5862.	3.6	65
51	Rational Design of a Piezoelectric BaTiO ₃ Nanodot Surfaceâ€Modified LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ Cathode Material for Highâ€Rate Lithiumâ€ion Batteries. ChemElectroChem, 2020, 7, 3646-3652.	1.7	15
52	Niobium Tungsten Oxide in a Green Water-in-Salt Electrolyte Enables Ultra-Stable Aqueous Lithium-Ion Capacitors. Nano-Micro Letters, 2020, 12, 168.	14.4	40
53	<i>In Situ</i> Tuning Residual Lithium Compounds and Constructing TiO ₂ Coating for Surface Modification of a Nickel-Rich Cathode toward High-Energy Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 12423-12432.	2.5	26
54	Atomic Layer Deposition of Single Atomic Cobalt as a Catalytic Interlayer for Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 11206-11212.	2.5	25

#	Article	IF	CITATIONS
55	A General Approach to Shaped MOFâ€Containing Aerogels toward Practical Water Treatment Application. Advanced Sustainable Systems, 2020, 4, 2000060.	2.7	43
56	Influence of electrolyte ions on rechargeable supercapacitor for high value-added conversion of low-grade waste heat. Journal of Power Sources, 2020, 465, 228263.	4.0	20
57	Aerosol-assisted preparation of N-doped hierarchical porous carbon spheres cathodes toward high-stable lithium-ion capacitors. Journal of Materials Science, 2020, 55, 13127-13140.	1.7	8
58	Trends in sputter deposited tungsten oxide structures for electrochromic applications: A review. Ceramics International, 2020, 46, 23295-23313.	2.3	50
59	Progress on zinc ion hybrid supercapacitors: Insights and challenges. Energy Storage Materials, 2020, 31, 252-266.	9.5	141
60	Sodiumâ€ion capacitors: Materials, Mechanism, and Challenges. ChemSusChem, 2020, 13, 2522-2539.	3.6	90
61	Bacterial cellulose-derived carbon nanofibers as both anode and cathode for hybrid sodium ion capacitor. RSC Advances, 2020, 10, 7780-7790.	1.7	25
62	Hierarchical N-doped hollow carbon microspheres as advanced materials for high-performance lithium-ion capacitors. Journal of Materials Chemistry A, 2020, 8, 3956-3966.	5.2	58
63	3D Printed Highâ€Loading Lithiumâ€Sulfur Battery Toward Wearable Energy Storage. Advanced Functional Materials, 2020, 30, 1909469.	7.8	81
64	Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon. Energy Storage Materials, 2020, 28, 307-314.	9.5	279
65	Defect-rich and N-doped hard carbon as a sustainable anode for high-energy lithium-ion capacitors. Journal of Colloid and Interface Science, 2020, 567, 75-83.	5.0	58
66	Efficient Synthesis of N-Doped SiO _{<i>x</i>} /C Composite Based on the Defect-Enriched Graphite Flake for Lithium-Ion Battery. ACS Applied Energy Materials, 2020, 3, 4394-4402.	2.5	30
67	Metal-free energy storage systems: combining batteries with capacitors based on a methylene blue functionalized graphene cathode. Journal of Materials Chemistry A, 2019, 7, 19668-19675.	5.2	138
68	Alloying Reaction Confinement Enables High-Capacity and Stable Anodes for Lithium-Ion Batteries. ACS Nano, 2019, 13, 9511-9519.	7.3	48
69	Advanced Nanoporous Material–Based QCM Devices: A New Horizon of Interfacial Mass Sensing Technology. Advanced Materials Interfaces, 2019, 6, 1900849.	1.9	69
70	Solid/Solid Interfacial Architecturing of Solid Polymer Electrolyte–Based Allâ€Solidâ€State Lithium–Sulfur Batteries by Atomic Layer Deposition. Small, 2019, 15, e1903952.	5.2	62
71	Rocking-chair Na-ion hybrid capacitor: a high energy/power system based on Na ₃ V ₂ O ₂ (PO ₄) ₂ F@PEDOT core–shell nanorods. Journal of Materials Chemistry A, 2019, 7, 1030-1037.	5.2	56
72	Successive Cationic and Anionic (De)â€Intercalation/ Incorporation into an Ionâ€Doped Radical Conducting Polymer. Batteries and Supercaps, 2019, 2, 979-984.	2.4	4

#	Article	IF	CITATIONS
73	Two Ï€â€Conjugated Covalent Organic Frameworks with Longâ€Term Cyclability at High Current Density for Lithium Ion Battery. Chemistry - A European Journal, 2019, 25, 15472-15476.	1.7	31
74	RbF as a Dendrite-Inhibiting Additive in Lithium Metal Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 20804-20811.	4.0	48
75	Catalytic Growth of Graphitic Carbonâ€Coated Silicon as Highâ€Performance Anodes for Lithium Storage. Energy Technology, 2019, 7, 1900502.	1.8	5
76	Confined Pyrolysis of ZIFâ€8 Polyhedrons Wrapped with Graphene Oxide Nanosheets to Prepare 3D Porous Carbon Heterostructures. Small Methods, 2019, 3, 1900277.	4.6	31
77	Engineering Ultrathin MoS ₂ Nanosheets Anchored on Nâ€Doped Carbon Microspheres with Pseudocapacitive Properties for Highâ€Performance Lithiumâ€Ion Capacitors. Small Methods, 2019, 3, 1900081.	4.6	96
78	Compressed and Crumpled Porous Carbon Electrode for High Volumetric Performance Electrical Doubleâ€Layer Capacitors. Energy Technology, 2019, 7, 1900209.	1.8	9
79	A Heavily Surface-Doped Polymer with the Bifunctional Catalytic Mechanism in Li-O2 Batteries. IScience, 2019, 14, 312-322.	1.9	11
80	A novel aqueous ammonium dual-ion battery based on organic polymers. Journal of Materials Chemistry A, 2019, 7, 11314-11320.	5.2	99
81	Nanoâ€sized Titanium Nitride Functionalized Separator Improves Cycling Performance of Lithium Sulfur Batteries. ChemistrySelect, 2019, 4, 698-704.	0.7	19
82	Rigid Polyimide Buffering Layer Enabling Silicon Nanoparticles Prolonged Cycling Life for Lithium Storage. ACS Applied Energy Materials, 2018, 1, 948-955.	2.5	12
83	Titelbild: Confined Selfâ€Assembly in Twoâ€Dimensional Interlayer Space: Monolayered Mesoporous Carbon Nanosheets with Inâ€Plane Orderly Arranged Mesopores and a Highly Graphitized Framework (Angew. Chem. 11/2018). Angewandte Chemie, 2018, 130, 2777-2777.	1.6	2
84	Novel Potassium-Ion Hybrid Capacitor Based on an Anode of K ₂ Ti ₆ O ₁₃ Microscaffolds. ACS Applied Materials & Interfaces, 2018, 10, 15542-15547.	4.0	209
85	Supercapacitors: Monodisperse Metallic NiCoSe ₂ Hollow Subâ€Microspheres: Formation Process, Intrinsic Chargeâ€5torage Mechanism, and Appealing Pseudocapacitance as Highly Conductive Electrode for Electrochemical Supercapacitors (Adv. Funct. Mater. 13/2018). Advanced Functional Materials. 2018, 28, 1870082.	7.8	11
86	Significant Effect of Pore Sizes on Energy Storage in Nanoporous Carbon Supercapacitors. Chemistry - A European Journal, 2018, 24, 6127-6132.	1.7	68
87	Selfâ€Templateâ€Directed Metal–Organic Frameworks Network and the Derived Honeycombâ€Like Carbon Flakes via Confinement Pyrolysis. Small, 2018, 14, e1704461.	5.2	44
88	Monodisperse Metallic NiCoSe ₂ Hollow Subâ€Microspheres: Formation Process, Intrinsic Chargeâ€Storage Mechanism, and Appealing Pseudocapacitance as Highly Conductive Electrode for Electrochemical Supercapacitors. Advanced Functional Materials, 2018, 28, 1705921.	7.8	214
89	Confined Selfâ€Assembly in Twoâ€Dimensional Interlayer Space: Monolayered Mesoporous Carbon Nanosheets with Inâ€Plane Orderly Arranged Mesopores and a Highly Graphitized Framework. Angewandte Chemie, 2018, 130, 2944-2948.	1.6	15
90	Confined Selfâ€Assembly in Twoâ€Dimensional Interlayer Space: Monolayered Mesoporous Carbon Nanosheets with Inâ€Plane Orderly Arranged Mesopores and a Highly Graphitized Framework. Angewandte Chemie - International Edition, 2018, 57, 2894-2898.	7.2	235

#	Article	IF	Citations
91	Nasicon-Type Surface Functional Modification in Coreâ€"Shell LiNi _{0.5} Mn _{0.3} Co _{0.2} O ₂ @NaTi ₂ 2(PO ₄ Cathode Enhances Its High-Voltage Cycling Stability and Rate Capacity toward Li-lon Batteries. ACS Applied Materials & Diterfaces, 2018, 10, 5498-5510.	>) ₄ <8ub>3<	:/sub> 145
92	Highâ€Voltage Li ₂ SiO ₃ â^'LiNi _{0.5} Mn _{1.5} O ₄ Hollow Spheres Prepared through In Situ Aerosol Spray Pyrolysis towards Highâ€Energy Liâ€Ion Batteries. ChemElectroChem, 2018, 5, 1212-1218.	1.7	19
93	A functional interlayer as a polysulfides blocking layer for high-performance lithium–sulfur batteries. New Journal of Chemistry, 2018, 42, 1431-1436.	1.4	39
94	Hierarchically Porous Multilayered Carbon Barriers for Highâ€Performance Li–S Batteries. Chemistry - A European Journal, 2018, 24, 3768-3775.	1.7	43
95	High Performance Aqueous Sodiumâ€lon Capacitors Enabled by Pseudocapacitance of Layered MnO ₂ . Energy Technology, 2018, 6, 2146-2153.	1.8	32
96	Progress of Nanostructured Electrode Materials for Supercapacitors. Advanced Sustainable Systems, 2018, 2, 1700110.	2.7	87
97	Aerosolâ€Spray Pyrolysis toward Preparation of Nanostructured Materials for Batteries and Supercapacitors. Small Methods, 2018, 2, 1700272.	4.6	48
98	Applications of Conventional Vibrational Spectroscopic Methods for Batteries Beyond Liâ€ion. Small Methods, 2018, 2, 1700332.	4.6	33
99	Superlithiated Polydopamine Derivative for High-Capacity and High-Rate Anode for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 38101-38108.	4.0	59
100	Enhanced Cycle Performance of Polyimide Cathode Using a Quasi-Solid-State Electrolyte. Journal of Physical Chemistry C, 2018, 122, 22294-22300.	1.5	30
101	Insights on the Proton Insertion Mechanism in the Electrode of Hexagonal Tungsten Oxide Hydrate. Journal of the American Chemical Society, 2018, 140, 11556-11559.	6.6	128
102	Graphene Caging Silicon Particles for Highâ€Performance Lithiumâ€Ion Batteries. Small, 2018, 14, e1800635.	5.2	146
103	Highly Graphitized Carbon Coating on SiO with a π–π Stacking Precursor Polymer for High Performance Lithium-Ion Batteries. Polymers, 2018, 10, 610.	2.0	14
104	Nitrogenated Urchinâ€like Nb ₂ O ₅ Microspheres with Extraordinary Pseudocapacitive Properties for Lithiumâ€lon Capacitors. ChemElectroChem, 2018, 5, 1516-1524.	1.7	36
105	Highâ€Voltage LiNi _{0.45} Cr _{0.1} Mn _{1.45} O ₄ Cathode with Superlong Cycle Performance for Wide Temperature Lithiumâ€lon Batteries. Advanced Functional Materials, 2018, 28, 1704808.	7.8	91
106	Uniform Hollow Mesoporous Nickel Cobalt Sulfide Microdumbbells: A Competitive Electrode with Exceptional Gravimetric/Volumetric Pseudocapacitance for Highâ€Energyâ€Density Hybrid Superapacitors. Advanced Electronic Materials, 2017, 3, 1600322.	2.6	38
107	Fabrication of flexible nanoporous nitrogen-doped graphene film for high-performance supercapacitors. Journal of Solid State Electrochemistry, 2017, 21, 1653-1663.	1.2	19
108	Self-supported electrodes of Na ₂ Ti ₃ O ₇ nanoribbon array/graphene foam and graphene foam for quasi-solid-state Na-ion capacitors. Journal of Materials Chemistry A, 2017, 5, 5806-5812.	5.2	48

#	Article	IF	CITATIONS
109	Black TiO2 Nanomaterials for Lithium-Ion Batteries. , 2017, , 249-273.		1
110	Supercapacitors: Uniform Hollow Mesoporous Nickel Cobalt Sulfide Microdumbbells: A Competitive Electrode with Exceptional Gravimetric/Volumetric Pseudocapacitance for Highâ€Energyâ€Density Hybrid Superapacitors (Adv. Electron. Mater. 2/2017). Advanced Electronic Materials, 2017, 3, .	2.6	0
111	Raspberry-like Nanostructured Silicon Composite Anode for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Diterfaces, 2017, 9, 18766-18773.	4.0	65
112	Prussian Blue Analogue with Fast Kinetics Through Electronic Coupling for Sodium Ion Batteries. ACS Applied Materials & Diterfaces, 2017, 9, 20306-20312.	4.0	96
113	Hierarchical porous carbons with layer-by-layer motif architectures from confined soft-template self-assembly in layered materials. Nature Communications, 2017, 8, 15717.	5.8	263
114	An Allâ€Stretchableâ€Component Sodiumâ€Ion Full Battery. Advanced Materials, 2017, 29, 1700898.	11.1	141
115	MoS ₂ â€Nanosheetâ€Decorated 2D Titanium Carbide (MXene) as Highâ€Performance Anodes for Sodiumâ€Ion Batteries. ChemElectroChem, 2017, 4, 1560-1565.	1.7	123
116	Highly Conductive and Lightweight Composite Film as Polysulfide Reservoir for Highâ€Performance Lithium–Sulfur Batteries. ChemElectroChem, 2017, 4, 362-368.	1.7	31
117	Biomass derived carbon for energy storage devices. Journal of Materials Chemistry A, 2017, 5, 2411-2428.	5.2	632
118	Nitrogenâ€Doped Porous Carbon Nanospheres from Natural Sepia Ink: Easy Preparation and Extraordinary Capacitive Performance. ChemNanoMat, 2017, 3, 895-901.	1.5	17
119	Highly stable lithium ion capacitor enabled by hierarchical polyimide derived carbon microspheres combined with 3D current collectors. Journal of Materials Chemistry A, 2017, 5, 23283-23291.	5.2	94
120	Few-Layer MXenes Delaminated via High-Energy Mechanical Milling for Enhanced Sodium-Ion Batteries Performance. ACS Applied Materials & Samp; Interfaces, 2017, 9, 39610-39617.	4.0	152
121	Bifunctional Redox Mediator Supported by an Anionic Surfactant for Long-Cycle Li–O ₂ Batteries. ACS Energy Letters, 2017, 2, 2659-2666.	8.8	42
122	Improved flexible Li-ion hybrid capacitors: Techniques for superior stability. Nano Research, 2017, 10, 4448-4456.	5.8	27
123	<i>Ad hoc</i> solid electrolyte on acidized carbon nanotube paper improves cycle life of lithium–sulfur batteries. Energy and Environmental Science, 2017, 10, 2544-2551.	15.6	82
124	A thin multifunctional coating on a separator improves the cyclability and safety of lithium sulfur batteries. Chemical Science, 2017, 8, 6619-6625.	3.7	94
125	Pseudocapacitive materials for electrochemical capacitors: from rational synthesis to capacitance optimization. National Science Review, 2017, 4, 71-90.	4.6	215
126	Hierarchical NiCo ₂ O ₄ nanosheets/nitrogen doped graphene/carbon nanotube film with ultrahigh capacitance and long cycle stability as a flexible binder-free electrode for supercapacitors. Journal of Materials Chemistry A, 2017, 5, 689-698.	5.2	131

#	Article	IF	Citations
127	Nb ₂ O ₅ nanoparticles encapsulated in ordered mesoporous carbon matrix as advanced anode materials for Li ion capacitors. RSC Advances, 2016, 6, 71338-71344.	1.7	34
128	Porous Silicon@Polythiophene Core–Shell Nanospheres for Lithiumâ€lon Batteries. Particle and Particle Systems Characterization, 2016, 33, 75-81.	1.2	13
129	Selfâ€Sacrificial Templateâ€Directed Synthesis of Metal–Organic Frameworkâ€Derived Porous Carbon for Energyâ€Storage Devices. ChemElectroChem, 2016, 3, 668-674.	1.7	52
130	Anionâ€Exchange Formation of Hollow NiCo ₂ S ₄ Nanoboxes from Mesocrystalline Nickel Cobalt Carbonate Nanocubes towards Enhanced Pseudocapacitive Properties. ChemPlusChem, 2016, 81, 557-563.	1.3	76
131	PAA/PEDOT:PSS as a multifunctional, water-soluble binder to improve the capacity and stability of lithium–sulfur batteries. RSC Advances, 2016, 6, 40650-40655.	1.7	81
132	Li3V2(PO4)3/nitrogen-doped reduced graphene oxide nanocomposite with enhanced lithium storage properties. Journal of Solid State Electrochemistry, 2016, 20, 1983-1990.	1.2	4
133	An in situ confinement strategy to porous poly(3,4-ethylenedioxythiophene)/sulfur composites for lithium–sulfur batteries. RSC Advances, 2016, 6, 47858-47863.	1.7	9
134	Heteroatomâ€Doped Porous Carbon Nanosheets: General Preparation and Enhanced Capacitive Properties. Chemistry - A European Journal, 2016, 22, 16668-16674.	1.7	17
135	Achieving High-Energy–High-Power Density in a Flexible Quasi-Solid-State Sodium Ion Capacitor. Nano Letters, 2016, 16, 5938-5943.	4.5	171
136	Interface miscibility induced double-capillary carbon nanofibers for flexible electric double layer capacitors. Nano Energy, 2016, 28, 232-240.	8.2	67
137	Effect of Graphene Modified Cu Current Collector on the Performance of Li ₄ Ti ₅ O ₁₂ Anode for Lithium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2016, 8, 30926-30932.	4.0	81
138	Analogous graphite carbon sheets derived from corn stalks as high performance sodium-ion battery anodes. RSC Advances, 2016, 6, 106218-106224.	1.7	26
139	Self-sacrifice Template Formation of Hollow Hetero-Ni7S6/Co3S4 Nanoboxes with Intriguing Pseudo-capacitance for High-performance Electrochemical Capacitors. Scientific Reports, 2016, 6, 20973.	1.6	89
140	Flexible Sodiumâ€Ion Pseudocapacitors Based on 3D Na ₂ Ti ₃ O ₇ Nanosheet Arrays/Carbon Textiles Anodes. Advanced Functional Materials, 2016, 26, 3703-3710.	7.8	270
141	Facile Synthesis of Nitrogenâ€Containing Mesoporous Carbon for Highâ€Performance Energy Storage Applications. Chemistry - A European Journal, 2016, 22, 4256-4262.	1.7	17
142	Zinc cobalt sulfide nanosheets grown on nitrogen-doped graphene/carbon nanotube film as a high-performance electrode for supercapacitors. Journal of Materials Chemistry A, 2016, 4, 11256-11263.	5.2	145
143	An advanced high-energy sodium ion full battery based on nanostructured Na ₂ Ti ₃ O ₇ /VOPO ₄ layered materials. Energy and Environmental Science, 2016, 9, 3399-3405.	15.6	247
144	Hollow NiCo ₂ S ₄ nanotube arrays grown on carbon textile as a self-supported electrode for asymmetric supercapacitors. RSC Advances, 2016, 6, 9950-9957.	1.7	47

#	Article	IF	CITATIONS
145	Synthesis and electrochemical performances of mixed-valence vanadium oxide/ordered mesoporous carbon composites for supercapacitors. RSC Advances, 2016, 6, 25056-25061.	1.7	15
146	Titanium Dioxide/Germanium Core–Shell Nanorod Arrays Grown on Carbon Textiles as Flexible Electrodes for High Density Lithiumâ€lon Batteries. Particle and Particle Systems Characterization, 2015, 32, 364-372.	1.2	32
147	General Strategy to Fabricate Ternary Metal Nitride/Carbon Nanofibers for Supercapacitors. ChemElectroChem, 2015, 2, 2020-2026.	1.7	19
148	Nanospace-Confinement Copolymerization Strategy for Encapsulating Polymeric Sulfur into Porous Carbon for Lithium–Sulfur Batteries. ACS Applied Materials & 11165-11171.	4.0	49
149	N-doped carbon foam based three-dimensional electrode architectures and asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 2853-2860.	5.2	70
150	Enhanced electrochemical performance of sulfur cathodes with a water-soluble binder. RSC Advances, 2015, 5, 13709-13714.	1.7	57
151	Three-dimensional graphene nanosheets/carbon nanotube paper as flexible electrodes for electrochemical capacitors. RSC Advances, 2015, 5, 22173-22177.	1.7	7
152	<i>In Situ</i> Self-Sacrificed Template Synthesis of Fe-N/G Catalysts for Enhanced Oxygen Reduction. ACS Applied Materials & ACS ACS Applied Materials & ACS Applied Materials & ACS ACS APPLIED & ACS APPLIED & ACS ACC ACC ACC ACC ACC ACC ACC ACC ACC	4.0	56
153	Three-dimensionally ordered porous TiNb ₂ O ₇ nanotubes: a superior anode material for next generation hybrid supercapacitors. Journal of Materials Chemistry A, 2015, 3, 16785-16790.	5.2	96
154	Flexible metal–organic frameworks as superior cathodes for rechargeable sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 16590-16597.	5.2	94
155	Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nature Communications, 2015, 6, 6694.	5.8	1,101
156	Stabilized titanium nitride nanowire supported silicon core–shell nanorods as high capacity lithium-ion anodes. Journal of Materials Chemistry A, 2015, 3, 12476-12481.	5.2	19
157	Lamellar-structured biomass-derived phosphorus- and nitrogen-co-doped porous carbon for high-performance supercapacitors. New Journal of Chemistry, 2015, 39, 9497-9503.	1.4	75
158	Crumpled Nitrogen-Doped Graphene for Supercapacitors with High Gravimetric and Volumetric Performances. ACS Applied Materials & Samp; Interfaces, 2015, 7, 22284-22291.	4.0	77
159	Porous NiCo ₂ O ₄ nanotubes as a noble-metal-free effective bifunctional catalyst for rechargeable Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 24309-24314.	5.2	57
160	Confined germanium nanoparticles in an N-doped carbon matrix for high-rate and ultralong-life lithium ion batteries. RSC Advances, 2015, 5, 85256-85263.	1.7	15
161	Absorption mechanism of carbon-nanotube paper-titanium dioxide as a multifunctional barrier material for lithium-sulfur batteries. Nano Research, 2015, 8, 3066-3074.	5.8	95
162	Preparation of ZnCo ₂ O ₄ nanoflowers on a 3D carbon nanotube/nitrogen-doped graphene film and its electrochemical capacitance. Journal of Materials Chemistry A, 2015, 3, 21891-21898.	5.2	93

#	Article	IF	Citations
163	Pseudocapacitive behaviours of Na ₂ Ti ₃ O ₇ @CNT coaxial nanocables for high-performance sodium-ion capacitors. Journal of Materials Chemistry A, 2015, 3, 21277-21283.	5.2	187
164	Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chemistry, 2015, 17, 1668-1674.	4.6	572
165	Ge–graphene–carbon nanotube composite anode for high performance lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 1498-1503.	5.2	105
166	Selfâ€Sacrifice Template Fabrication of Hierarchical Mesoporous Biâ€Componentâ€Active ZnO/ZnFe ₂ O ₄ Subâ€Microcubes as Superior Anode Towards Highâ€Performance Lithiumâ€Ion Battery. Advanced Functional Materials, 2015, 25, 238-246.	7.8	334
167	Enhanced Performance of Aqueous Sodiumâ€lon Batteries Using Electrodes Based on the NaTi ₂ (PO ₄) ₃ /MWNTs–Na _{0.44} MnO ₂ System. Energy Technology, 2014, 2, 705-712.	1.8	56
168	Enhanced Lithiumâ€Storage Performance from Threeâ€Dimensional MoS ₂ Nanosheets/Carbon Nanotube Paper. ChemElectroChem, 2014, 1, 1118-1125.	1.7	43
169	High performance three-dimensional Ge/cyclized-polyacrylonitrile thin film anodes prepared by RF magnetron sputtering for lithium ion batteries. Journal of Materials Science, 2014, 49, 2279-2285.	1.7	18
170	Templateâ€Free Fabrication of Mesoporous Hollow ZnMn ₂ O ₄ Subâ€microspheres with Enhanced Lithium Storage Capability towards Highâ€Performance Liâ€Ion Batteries. Particle and Particle Systems Characterization, 2014, 31, 657-663.	1.2	68
171	Metal Oxides: Mesoporous NiCo ₂ O ₄ Nanowire Arrays Grown on Carbon Textiles as Binderâ€Free Flexible Electrodes for Energy Storage (Adv. Funct. Mater. 18/2014). Advanced Functional Materials, 2014, 24, 2736-2736.	7.8	10
172	Mesoporous NiCo ₂ O ₄ Nanowire Arrays Grown on Carbon Textiles as Binderâ€Free Flexible Electrodes for Energy Storage. Advanced Functional Materials, 2014, 24, 2630-2637.	7.8	718
173	Rhombohedral NASICON-structured Li2NaV2(PO4)3 with single voltage plateau for superior lithium storage. RSC Advances, 2014, 4, 8627.	1.7	28
174	Mesoporous NaTi ₂ (PO ₄) ₃ /CMK-3 nanohybrid as anode for long-life Na-ion batteries. Journal of Materials Chemistry A, 2014, 2, 20659-20666.	5.2	99
175	High performance lithium–sulfur batteries: advances and challenges. Journal of Materials Chemistry A, 2014, 2, 12662-12676.	5.2	269
176	Facile synthesis of nitrogen-doped carbon derived from polydopamine-coated Li ₃ V ₂ (PO ₄) ₃ as cathode material for lithium-ion batteries. RSC Advances, 2014, 4, 38791-38796.	1.7	34
177	From biomolecule to Na ₃ V ₂ (PO ₄) ₃ /nitrogen-decorated carbon hybrids: highly reversible cathodes for sodium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 18606-18612.	5.2	65
178	Highly enhanced lithium storage capability of LiNi _{0.5} Mn _{1.5} O ₄ by coating with Li ₂ TiO ₃ for Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 18256-18262.	5.2	93
179	Prussian blue analogues: a new class of anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 5852-5857.	5.2	241
180	Green Templateâ€Free Synthesis of Mesoporous Ternary CoNi–Mn Oxide Nanowires Towards Highâ€Performance Electrochemical Capacitors. Particle and Particle Systems Characterization, 2014, 31, 778-787.	1.2	38

#	Article	IF	Citations
181	Synthesis of hydrogenated TiO ₂ –reduced-graphene oxide nanocomposites and their application in high rate lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 9150-9155.	5.2	35
182	Design of a Nitrogenâ€Doped, Carbonâ€Coated Li ₄ Ti ₅ O ₁₂ Nanocomposite with a Core–Shell Structure and Its Application for Highâ€Rate Lithiumâ€Ion Batteries. ChemPlusChem, 2014, 79, 128-133.	1.3	32
183	One-Pot Synthesis of Graphene-Supported Monodisperse Pd Nanoparticles as Catalyst for Formic Acid Electro-oxidation. Scientific Reports, 2014, 4, 4501.	1.6	127
184	Preparation and electrochemical performances of porous polypyrrole film by interfacial polymerization. Journal of Applied Polymer Science, 2013, 127, 2938-2944.	1.3	16
185	3D porous layered double hydroxides grown on graphene as advanced electrochemical pseudocapacitor materials. Journal of Materials Chemistry A, 2013, 1, 9046.	5.2	202
186	Enhancing the electrochemical performance of Li1.2Ni0.2Mn0.6O2 by surface modification with nickel–manganese composite oxide. Journal of Solid State Electrochemistry, 2013, 17, 2087-2093.	1,2	15
187	Polymer-assisted synthesis of a 3D hierarchical porous network-like spinel NiCo2O4 framework towards high-performance electrochemical capacitors. Journal of Materials Chemistry A, 2013, 1, 11145.	5.2	160
188	Advanced Energyâ€Storage Architectures Composed of Spinel Lithium Metal Oxide Nanocrystal on Carbon Textiles. Advanced Energy Materials, 2013, 3, 1484-1489.	10.2	109
189	Fabrication of a sandwich structured electrode for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 14280.	5.2	40
190	Facile synthesis of Co2P2O7 nanorods as a promising pseudocapacitive material towards high-performance electrochemical capacitors. RSC Advances, 2013, 3, 21558.	1.7	44
191	Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithiumâ€ ⁴ sulfur battery. Journal of Materials Chemistry A, 2013, 1, 4490.	5.2	266
192	Preparation and properties of polystyrene nanocomposites with graphite oxide and graphene as flame retardants. Journal of Materials Science, 2013, 48, 4214-4222.	1.7	125
193	Chemically tailoring the nanostructure of graphenenanosheets to confine sulfur for high-performance lithium-sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 1096-1101.	5.2	180
194	Flexible Films Derived from Electrospun Carbon Nanofibers Incorporated with Co ₃ O ₄ Hollow Nanoparticles as Self‧upported Electrodes for Electrochemical Capacitors. Advanced Functional Materials, 2013, 23, 3909-3915.	7.8	233
195	Preparation and capacitive performances of PEDOT/indigo carmine composite hydrogel. Polymer Composites, 2013, 34, 989-996.	2.3	18
196	Capacitors: Flexible Films Derived from Electrospun Carbon Nanofibers Incorporated with Co ₃ O ₄ Hollow Nanoparticles as Selfâ€Supported Electrodes for Electrochemical Capacitors (Adv. Funct. Mater. 31/2013). Advanced Functional Materials, 2013, 23, 3944-3944.	7.8	3
197	HIERARCHICAL Li4Ti5O12 MICROSPHERES AS A HIGH POWER ANODE MATERIAL FOR LITHIUM ION BATTERIES. Journal of Molecular and Engineering Materials, 2013, 01, 1340013.	0.9	0
198	Ultrathin Mesoporous NiCo ₂ O ₄ Nanosheets Supported on Ni Foam as Advanced Electrodes for Supercapacitors. Advanced Functional Materials, 2012, 22, 4592-4597.	7.8	1,545

#	Article	IF	Citations
199	Flower-like LiMnPO4 hierarchical microstructures assembled from single-crystalline nanosheets for lithium-ion batteries. CrystEngComm, 2012, 14, 4284.	1.3	58
200	Preparation and Enhanced Electrochemical Performance of MnO ₂ Nanosheets for Supercapacitors. Journal of the Chinese Chemical Society, 2012, 59, 1275-1279.	0.8	9
201	Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy and Environmental Science, 2012, 5, 7883.	15.6	780
202	Flexible Hybrid Paper Made of Monolayer Co ₃ O ₄ Microsphere Arrays on rGO/CNTs and Their Application in Electrochemical Capacitors. Advanced Functional Materials, 2012, 22, 2560-2566.	7.8	362
203	Li ₄ Ti ₅ O ₁₂ Nanoparticles Embedded in a Mesoporous Carbon Matrix as a Superior Anode Material for High Rate Lithium Ion Batteries. Advanced Energy Materials, 2012, 2, 691-698.	10.2	321
204	Mesoporous Carbon: Li4Ti5O12 Nanoparticles Embedded in a Mesoporous Carbon Matrix as a Superior Anode Material for High Rate Lithium Ion Batteries (Adv. Energy Mater. 6/2012). Advanced Energy Materials, 2012, 2, 699-699.	10.2	5
205	Synthesis and supercapacitance of flower-like Co(OH)2 hierarchical superstructures self-assembled by mesoporous nanobelts. Journal of Solid State Electrochemistry, 2012, 16, 1519-1525.	1.2	21
206	Glycine-assisted hydrothermal synthesis of nanostructured Co x Ni1â⁻¹x –Al layered triple hydroxides as electrode materials for high-performance supercapacitors. Journal of Solid State Electrochemistry, 2012, 16, 1933-1940.	1.2	34
207	Preparation of activated carbon from waste Camellia oleifera shell for supercapacitor application. Journal of Solid State Electrochemistry, 2012, 16, 2179-2186.	1.2	109
208	Biomolecule-assisted hydrothermal approach towards synthesis of ultra-thin nanoporous α-Co(OH)2 mesocrystal nanosheets for electrochemical capacitors. CrystEngComm, 2011, 13, 6130.	1.3	27
209	Facile interfacial synthesis of flower-like hierarchical a-MnO2 sub-microspherical superstructures constructed by two-dimension mesoporous nanosheets and their application in electrochemical capacitors. Journal of Materials Chemistry, 2011, 21, 16035.	6.7	96
210	Urchin-like Co3O4 microspherical hierarchical superstructures constructed by one-dimension nanowires toward electrochemical capacitors. RSC Advances, 2011, 1, 1521.	1.7	73
211	Novel template-free solvothermal synthesis of mesoporous Li4Ti5O12-C microspheres for high power lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 14414.	6.7	81
212	In situ growth of Li ₄ Ti ₅ O ₁₂ on multi-walled carbon nanotubes: novel coaxial nanocables for high rate lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 761-767.	6.7	182
213	Mesoporous NiO with various hierarchical nanostructures by quasi-nanotubes/nanowires/nanorodsself-assembly: controllable preparation and application in supercapacitors. CrystEngComm, 2011, 13, 626-632.	1.3	121
214	Large-scale Co3O4 nanoparticles growing on nickel sheets via a one-step strategy and their ultra-highly reversible redox reaction toward supercapacitors. Journal of Materials Chemistry, 2011, 21, 18183.	6.7	88
215	Electrochemical behavior of Co3O4 microspheres in aqueous LiOH solution. Rare Metals, 2011, 30, 90-93.	3.6	4
216	Effect of feeding ratios on the structure and electrochemical performance of graphite oxide/polypyrrole nanocomposites. Science Bulletin, 2011, 56, 2846-2852.	1.7	15

#	Article	IF	CITATIONS
217	Capacitance properties of graphite oxide/poly(3,4â€ethylene dioxythiophene) composites. Journal of Applied Polymer Science, 2011, 121, 892-898.	1.3	50
218	Facile synthesis of hierarchically porous Li4Ti5O12 microspheres for high rate lithium ion batteries. Journal of Materials Chemistry, 2010, 20, 6998.	6.7	266
219	Large-scale Synthesis of Nitrogen-doped Carbon Nanotubes by Chemical Vapor Deposition Using a Co-based Catalyst from Layered Double Hydroxides. Catalysis Letters, 2010, 135, 312-320.	1.4	15
220	Lysine-assisted hydrothermal synthesis of urchin-like ordered arrays of mesoporous Co(OH)2 nanowires and their application in electrochemical capacitors. Journal of Materials Chemistry, 2010, 20, 10809.	6.7	115
221	Microwave-assisted synthesis of organic–inorganic poly(3,4-ethylenedioxythiophene)/RuO2·xH2O nanocomposite for supercapacitor. Journal of Solid State Electrochemistry, 2009, 13, 1925-1933.	1.2	32
222	Improved performances of mechanical-activated LiMn2O4/MWNTs cathode for aqueous rechargeable lithium batteries. Journal of Applied Electrochemistry, 2009, 39, 1943-1948.	1.5	32
223	Template-free synthesis of ordered mesoporous NiO/poly(sodium-4-styrene sulfonate) functionalized carbon nanotubes composite for electrochemical capacitors. Nano Research, 2009, 2, 722-732.	5.8	57
224	Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. Journal of Materials Chemistry, 2009, 19, 5772.	6.7	830
225	Synthesis and utilization of RuO $<$ sub $>2<$ sub $>\hat{A}\cdot$ xH $<$ sub $>2<$ sub >0 nanodots well dispersed on poly(sodium 4-styrene sulfonate) functionalized multi-walled carbon nanotubes for supercapacitors. Journal of Materials Chemistry, 2009, 19, 246-252.	6.7	136
226	EQCM Investigation of a Dual-Doped Polymer Electrode for Li-Ion Batteries with Improved Reversible Capacity. ACS Applied Materials & Dual-Doped Polymer Electrode for Li-Ion Batteries with Improved Reversible Capacity.	4.0	0