James R Connor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7411349/publications.pdf

Version: 2024-02-01

78 4,653 31 65
papers citations h-index g-index

82 82 82 5131

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Importance of the intersection of age and sex to understand variation in incidence and survival for primary malignant gliomas. Neuro-Oncology, 2022, 24, 302-310.	1.2	29
2	Biological Activity of a Thiobarbituric Acid Compound in Neuroblastomas. Anticancer Research, 2021, 41, 1171-1181.	1.1	4
3	Association Between Iron and Cholesterol in Neuroblastomas. Anticancer Research, 2021, 41, 2795-2804.	1.1	1
4	OMIC-10. TRANSCRIPTOMIC ANALYSIS REVEALS SEX DIFFERENCES IN PEDIATRIC BRAIN MECHANISMS. Neuro-Oncology, 2021, 23, i39-i39.	1.2	0
5	Low plasma serotonin linked to higher nigral iron in Parkinson's disease. Scientific Reports, 2021, 11, 24384.	3.3	7
6	Transferrin and Hâ€ferritin involvement in brain iron acquisition during postnatal development: impact of sex and genotype. Journal of Neurochemistry, 2020, 152, 381-396.	3.9	24
7	The roles of iron and HFE genotype in neurological diseases. Molecular Aspects of Medicine, 2020, 75, 100867.	6.4	27
8	Characterization of a Novel Barbituric Acid and Two Thiobarbituric Acid Compounds for Lung Cancer Treatment. Anticancer Research, 2020, 40, 6039-6049.	1.1	11
9	High-affinity mutant Interleukin-13 targeted CAR T cells enhance delivery of clickable biodegradable fluorescent nanoparticles to glioblastoma. Bioactive Materials, 2020, 5, 624-635.	15.6	34
10	H63D variant of the homeostatic iron regulator (HFE) gene alters αâ€synuclein expression, aggregation, and toxicity. Journal of Neurochemistry, 2020, 155, 177-190.	3.9	9
11	Gliomas display distinct sex-based differential methylation patterns based on molecular subtype. Neuro-Oncology Advances, 2020, 2, vdaa002.	0.7	15
12	JAM-A functions as a female microglial tumor suppressor in glioblastoma. Neuro-Oncology, 2020, 22, 1591-1601.	1.2	26
13	Sexually dimorphic impact of the iron-regulating gene, HFE, on survival in glioblastoma. Neuro-Oncology Advances, 2020, 2, vdaa001.	0.7	2
14	Evidence for communication of peripheral iron status to cerebrospinal fluid: clinical implications for therapeutic strategy. Fluids and Barriers of the CNS, 2020, 17, 28.	5.0	6
15	Endothelial cells are critical regulators of iron transport in a model of the human blood–brain barrier. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 2117-2131.	4.3	75
16	Exosomes and their implications in central nervous system tumor biology. Progress in Neurobiology, 2019, 172, 71-83.	5.7	26
17	Liposomal delivery of ferritin heavy chain 1 (FTH1) siRNA in patient xenograft derived glioblastoma initiating cells suggests different sensitivities to radiation and distinct survival mechanisms. PLoS ONE, 2019, 14, e0221952.	2.5	13
18	Iron uptake at the blood-brain barrier is influenced by sex and genotype. Advances in Pharmacology, 2019, 84, 123-145.	2.0	16

#	Article	IF	Citations
19	Iron, Myelin, and the Brain: Neuroimaging Meets Neurobiology. Trends in Neurosciences, 2019, 42, 384-401.	8.6	123
20	Semaphorin4A causes loss of mature oligodendrocytes and demyelination in vivo. Journal of Neuroinflammation, 2019, 16, 28.	7.2	9
21	Oroxylum indicum (L.) extract protects human neuroblastoma SH‑SY5Y cells against β‑amyloid‑induced cell injury. Molecular Medicine Reports, 2019, 20, 1933-1942.	2.4	13
22	<scp>HFE</scp> Genotype Restricts the Response to Paraquat in a Mouse Model of Neurotoxicity. Journal of Neurochemistry, 2018, 145, 299-311.	3.9	19
23	Emerging and Dynamic Biomedical Uses of Ferritin. Pharmaceuticals, 2018, 11, 124.	3.8	67
24	Pharmaceutical iron formulations do not cross a model of the human blood-brain barrier. PLoS ONE, 2018, 13, e0198775.	2.5	15
25	A Possible Role for Platelet-Activating Factor Receptor in Amyotrophic Lateral Sclerosis Treatment. Frontiers in Neurology, 2018, 9, 39.	2.4	9
26	Tumor targeted delivery of doxorubicin in malignant peripheral nerve sheath tumors. PLoS ONE, 2018, 13, e0181529.	2.5	6
27	Exosomes impact survival to radiation exposure in cell line models of nervous system cancer. Oncotarget, 2018, 9, 36083-36101.	1.8	54
28	The Relationship Between Iron Deficiency Anemia and Sensorineural Hearing Loss in the Pediatric and Adolescent Population. American Journal of Audiology, 2017, 26, 155-162.	1.2	24
29	HFE genotype affects exosome phenotype in cancer. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1921-1928.	2.4	12
30	Interleukin-13 conjugated quantum dots for identification of glioma initiating cells and their extracellular vesicles. Acta Biomaterialia, 2017, 58, 205-213.	8.3	45
31	Regulatory mechanisms for iron transport across the blood-brain barrier. Biochemical and Biophysical Research Communications, 2017, 494, 70-75.	2.1	40
32	Statins accelerate disease progression and shorten survival in SOD1 ^{G93A} mice. Muscle and Nerve, 2016, 54, 284-291.	2.2	23
33	Increased R2* in the Caudate Nucleus of Asymptomatic Welders. Toxicological Sciences, 2016, 150, 369-377.	3.1	18
34	MRI contrast agent for targeting glioma: interleukin-13 labeled liposome encapsulating gadolinium-DTPA. Neuro-Oncology, 2016, 18, 691-699.	1.2	48
35	Semaphorin4A Is Cytotoxic to Oligodendrocytes and Is Elevated in Microglia and Multiple Sclerosis. ASN Neuro, 2015, 7, 175909141558750.	2.7	18
36	The effects of okra (Abelmoschus esculentus Linn.) on the cellular events associated with Alzheimer's disease in a stably expressed HFE neuroblastoma SH-SY5Y cell line. Neuroscience Letters, 2015, 603, 6-11.	2.1	15

#	Article	IF	Citations
37	HFE polymorphisms affect survival of brain tumor patients. Journal of Neuro-Oncology, 2015, 122, 97-104.	2.9	6
38	Preferential Iron Trafficking Characterizes Glioblastoma Stem-like Cells. Cancer Cell, 2015, 28, 441-455.	16.8	249
39	The HFE genotype and a formulated diet controlling for iron status attenuate experimental cerebral malaria in mice. International Journal for Parasitology, 2015, 45, 797-808.	3.1	6
40	The relationship between iron dyshomeostasis and amyloidogenesis in Alzheimer's disease: Two sides of the same coin. Neurobiology of Disease, 2015, 81, 49-65.	4.4	115
41	From adaption to death: endoplasmic reticulum stress as a novel target of selective neurodegeneration?. Neural Regeneration Research, 2015, 10, 1397.	3.0	6
42	Characterization of a Novel Anti-Cancer Compound for Astrocytomas. PLoS ONE, 2014, 9, e108166.	2.5	10
43	HFE gene variants, iron, and lipids: a novel connection in Alzheimer $ ilde{A}$ \$, \neg a\$, \$\psi\$ disease. Frontiers in Pharmacology, 2014, 5, 165.	3.5	33
44	H63D mutation in hemochromatosis alters cholesterol metabolism and induces memory impairment. Neurobiology of Aging, 2014, 35, 1511.e1-1511.e12.	3.1	25
45	H63D HFE genotype accelerates disease progression in animal models of amyotrophic lateral sclerosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 2413-2426.	3.8	26
46	A mutation in the HFE gene is associated with altered brain iron profiles and increased oxidative stress in mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 729-741.	3.8	51
47	H63D <i>HFE</i> polymorphisms are associated with increased disease duration and decreased muscle superoxide dismutase-1 expression in amyotrophic lateral sclerosis patients. Muscle and Nerve, 2013, 48, 242-246.	2.2	13
48	Postmortem and imaging based analyses reveal CNS decreased myelination in restless legs syndrome. Sleep Medicine, 2011, 12, 614-619.	1.6	72
49	Mutant HFE H63D Protein Is Associated with Prolonged Endoplasmic Reticulum Stress and Increased Neuronal Vulnerability. Journal of Biological Chemistry, 2011, 286, 13161-13170.	3.4	43
50	Profile of altered brain iron acquisition in restless legs syndrome. Brain, 2011, 134, 959-968.	7.6	203
51	Bone Structural and Mechanical Properties Are Affected by Hypotransferrinemia But Not by Iron Deficiency in Mice. Journal of Bone and Mineral Research, 2010, 15, 271-277.	2.8	8
52	Altered dopaminergic profile in the putamen and substantia nigra in restless leg syndrome. Brain, 2009, 132, 2403-2412.	7.6	299
53	Pathophysiology of restless legs syndrome: Evidence for iron involvement. Current Neurology and Neuroscience Reports, 2008, 8, 162-166.	4.2	55
54	Comparative study of the influence of Thy1 deficiency and dietary iron deficiency on dopaminergic profiles in the mouse striatum. Journal of Neuroscience Research, 2008, 86, 3194-3202.	2.9	12

#	Article	IF	Citations
55	Consequences of expressing mutants of the hemochromatosis gene (HFE) into a human neuronal cell line lacking endogenous HFE. FASEB Journal, 2007, 21, 564-576.	0.5	56
56	Proteomic analysis of CSF can identify iron deficient monkeys. FASEB Journal, 2007, 21, A1117.	0.5	0
57	Oâ€glycosylation regulates Hâ€ferritin transport into the nucleus. FASEB Journal, 2007, 21, A990.	0.5	0
58	Characterization of Hfe mutations in brain tumor cells. FASEB Journal, 2006, 20, A509.	0.5	0
59	Myelin breakdown in Alzheimer's disease: a commentary. Neurobiology of Aging, 2004, 25, 45-47.	3.1	14
60	The case for iron chelation and/or antioxidant therapy in Alzheimer's disease. Drug Development Research, 2002, 56, 526-530.	2.9	15
61	Characterization of a novel brain-derived microglial cell line isolated from neonatal rat brain. Glia, 2001, 35, 53-62.	4.9	153
62	Insight into the pathophysiology of restless legs syndrome. Journal of Neuroscience Research, 2000, 62, 623-628.	2.9	209
63	Identification of iron responsive genes by screening cDNA libraries from suppression subtractive hybridization with antisense probes from three iron conditions. Nucleic Acids Research, 2000, 28, 1802-1807.	14.5	51
64	Insight into the pathophysiology of restless legs syndrome. Journal of Neuroscience Research, 2000, 62, 623-628.	2.9	1
65	Existing and emerging mechanisms for transport of iron and manganese to the brain. , 1999, 56, 113-122.		123
66	Evidence for non-transferrin-mediated uptake and release of iron and manganese in glial cell cultures from hypotransferrinemic mice., 1998, 51, 454-462.		58
67	Cellular distribution of ferritin subunits in postnatal rat brain. Journal of Comparative Neurology, 1998, 400, 73-86.	1.6	113
68	Relationship of iron to oligondendrocytes and myelination. Glia, 1996, 17, 83-93.	4.9	607
69	Demonstration and Characterization of the Iron Regulatory Protein in Human Brain. Journal of Neurochemistry, 1996, 67, 838-844.	3.9	34
70	Relationship of iron to oligondendrocytes and myelination. , 1996, 17, 83.		3
71	Cellular distribution of iron, transferrin, and ferritin in the hypotransferrinemic (Hp) mouse brain. Journal of Comparative Neurology, 1995, 355, 67-80.	1.6	61
72	Iron Regulation in the Developing Rat Brain: Effect of In Utero Ethanol Exposure. Journal of Neurochemistry, 1995, 65, 373-380.	3.9	54

#	Article	IF	CITATIONS
73	A Quantitative Analysis of Isoferritins in Select Regions of Aged, Parkinsonian, and Alzheimer's Diseased Brains. Journal of Neurochemistry, 1995, 65, 717-724.	3.9	290
74	Iron, Transferrin, and Ferritin in the Rat Brain During Development and Aging. Journal of Neurochemistry, 1994, 63, 709-716.	3.9	151
75	Ferritin, transferrin, and iron in selected regions of the adult and aged rat brain. Journal of Comparative Neurology, 1993, 338, 97-113.	1.6	222
76	Iron regulation in the brain: Histochemical, biochemical, and molecular considerations. Annals of Neurology, 1992, 32, S51-S61.	5. 3	155
77	Expression of Transferrin mRNA in the CNS of Normal and Jimpy Mice. Journal of Neurochemistry, 1991, 57, 318-322.	3.9	81
78	Do oligodendrocytes mediate iron regulation in the human brain?. Annals of Neurology, 1989, 26, 95-98.	5.3	84