Joon Hak Oh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7411243/publications.pdf

Version: 2024-02-01

18482 22832 13,449 159 62 112 citations h-index g-index papers 164 164 164 14587 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Neuromorphic bioelectronics based on semiconducting polymers. Journal of Polymer Science, 2022, 60, 348-376.	3.8	23
2	Highly Efficient Hole Transport Layerâ€Free Low Bandgap Mixed Pb–Sn Perovskite Solar Cells Enabled by a Binary Additive System. Advanced Functional Materials, 2022, 32, 2110069.	14.9	30
3	Ultrasensitive Nearâ€Infrared Circularly Polarized Light Detection Using 3D Perovskite Embedded with Chiral Plasmonic Nanoparticles. Advanced Science, 2022, 9, e2104598.	11.2	23
4	Stretchable N-Type High-Performance Polymers Based on Asymmetric Thienylvinyl-1,1-Dicyanomethylene-3-Indanone for Plastic Electronics. Chemistry of Materials, 2022, 34, 1554-1566.	6.7	27
5	Wearable Sensors for Healthcare Monitoring and Soft Robotics. , 2022, , 125-179.		0
6	Usefulness of Polar and Bulky Phosphonate Chain-End Solubilizing Groups in Polymeric Semiconductors. Macromolecules, 2022, 55, 4367-4377.	4.8	15
7	Micro-/nano-sized multifunctional heterochiral metal–organic frameworks for high-performance visible–blind UV photodetectors. Journal of Materials Chemistry C, 2021, 9, 7310-7318.	5.5	14
8	Fabrication of Stretchable and Transparent Core–Shell Polymeric Nanofibers Using Coaxial Electrospinning and Their Application to Phototransistors. Advanced Electronic Materials, 2021, 7, 2001000.	5.1	15
9	Ï€-Extended perylene diimide double-heterohelicenes as ambipolar organic semiconductors for broadband circularly polarized light detection. Nature Communications, 2021, 12, 142.	12.8	137
10	A Hippocampusâ€Inspired Dualâ€Gated Organic Artificial Synapse for Simultaneous Sensing of a Neurotransmitter and Light. Advanced Materials, 2021, 33, e2100119.	21.0	59
11	Fused Aromatic Network Structures: Fused Aromatic Network with Exceptionally High Carrier Mobility (Adv. Mater. 9/2021). Advanced Materials, 2021, 33, 2170063.	21.0	O
12	Bay-Substitution Effect of Perylene Diimides on Supramolecular Chirality and Optoelectronic Properties of Their Self-Assembled Nanostructures. ACS Applied Materials & Samp; Interfaces, 2021, 13, 12278-12285.	8.0	16
13	Diazapentalene-Containing Ultralow-Band-Gap Copolymers for High-Performance Near-Infrared Organic Phototransistors. Chemistry of Materials, 2021, 33, 7499-7508.	6.7	19
14	Fused Aromatic Network with Exceptionally High Carrier Mobility. Advanced Materials, 2021, 33, e2004707.	21.0	16
15	Synergistic Effects of Cation and Anion in an Ionic Imidazolium Tetrafluoroborate Additive for Improving the Efficiency and Stability of Halfâ€Mixed Pbâ€Sn Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2008801.	14.9	66
16	"Majorityâ€Rules―Effect on Supramolecular Chirality and Optoelectronic Properties of Chiral Tetrachloroâ€Perylene Diimides. Advanced Optical Materials, 2021, 9, 2001911.	7.3	10
17	Effects of the Polarity and Bulkiness of End-Functionalized Side Chains on the Charge Transport of Dicyanovinyl-End-Capped Diketopyrrolopyrrole-Based n-Type Small Molecules. ACS Applied Materials & amp; Interfaces, 2021, 13, 52840-52849.	8.0	10
18	Boosting the Optoelectronic Properties of Molybdenum Diselenide by Combining Phase Transition Engineering with Organic Cationic Dye Doping. ACS Nano, 2021, 15, 17769-17779.	14.6	10

#	Article	IF	Citations
19	High-Performance Ambipolar Organic Phototransistors Based on Core–Shell p–n Junction Organic Single Crystals. ACS Applied Electronic Materials, 2020, 2, 9-18.	4.3	17
20	Surface-Doped Quasi-2D Chiral Organic Single Crystals for Chiroptical Sensing. ACS Nano, 2020, 14, 14146-14156.	14.6	33
21	Perovskite Photodetectors: Perovskite Granular Wire Photodetectors with Ultrahigh Photodetectivity (Adv. Mater. 32/2020). Advanced Materials, 2020, 32, 2070238.	21.0	5
22	Optoelectronic Property Modulation in Chiral Organic Semiconductor/Polymer Blends. ACS Applied Materials & Samp; Interfaces, 2020, 12, 49926-49934.	8.0	13
23	Perovskite Granular Wire Photodetectors with Ultrahigh Photodetectivity. Advanced Materials, 2020, 32, e2002357.	21.0	36
24	Regular H-Bonding-Containing Polymers with Stretchability up to 100% External Strain for Self-Healable Plastic Transistors. Chemistry of Materials, 2020, 32, 1914-1924.	6.7	60
25	Flexible high-performance graphene hybrid photodetectors functionalized with gold nanostars and perovskites. NPG Asia Materials, 2020, 12, .	7.9	21
26	Deformable and Stretchable Electrodes for Soft Electronic Devices. Macromolecular Research, 2019, 27, 625-639.	2.4	32
27	Organic Electronics: Flexible Lowâ€Power Operative Organic Sourceâ€Gated Transistors (Adv. Funct.) Tj ETQq1	1 0,78431 14.9	4 rgBT /Over
28	Understanding of Fluorination Dependence on Electron Mobility and Stability of Naphthalenediimide-Based Polymer Transistors in Environment with 100% Relative Humidity. ACS Applied Materials & Diterfaces, 2019, 11, 40347-40357.	8.0	26
29	Highly flexible chemical sensors based on polymer nanofiber field-effect transistors. Journal of Materials Chemistry C, 2019, 7, 1525-1531.	5.5	49
30	Tuning the supramolecular chirality and optoelectronic performance of chiral perylene diimide nanowires <i>via N</i> -substituted side chain engineering. Journal of Materials Chemistry C, 2019, 7, 8688-8697.	5.5	23
31	Stretchable and Self-Healable Conductive Hydrogels for Wearable Multimodal Touch Sensors with Thermoresponsive Behavior. ACS Applied Materials & Early; Interfaces, 2019, 11, 26134-26143.	8.0	81
32	High-Performance Hybrid Photovoltaics with Efficient Interfacial Contacts between Vertically Aligned ZnO Nanowire Arrays and Organic Semiconductors. ACS Omega, 2019, 4, 9996-10002.	3.5	13
33	Furan-flanked diketopyrrolopyrrole-based chalcogenophene copolymers with siloxane hybrid side chains for organic field-effect transistors. Polymer Chemistry, 2019, 10, 2854-2862.	3.9	33
34	Heterochiral Doped Supramolecular Coordination Networks for High-Performance Optoelectronics. ACS Applied Materials & Doped Supramolecular Coordination Networks for High-Performance Optoelectronics.	8.0	11
35	Bioderived and Eco-Friendly Solvent-Processed High-Mobility Ambipolar Plastic Transistors through Controlled Irregularity of the Polymer Backbone. Chemistry of Materials, 2019, 31, 3831-3839.	6.7	20
36	Flexible Lowâ€Power Operative Organic Sourceâ€Gated Transistors. Advanced Functional Materials, 2019, 29, 1900650.	14.9	20

#	Article	lF	CITATIONS
37	Highly stretchable fiber transistors with all-stretchable electronic components and graphene hybrid electrodes. Organic Electronics, 2019, 69, 320-328.	2.6	18
38	Non-halogenated solution-processed ambipolar plastic transistors based on conjugated polymers prepared by asymmetric donor engineering. Journal of Materials Chemistry C, 2019, 7, 14977-14985.	5.5	9
39	Amplified circularly polarized phosphorescence from co-assemblies of platinum(<scp>ii</scp>) complexes. Chemical Science, 2019, 10, 1294-1301.	7.4	89
40	A Flexible Highâ€Performance Photoimaging Device Based on Bioinspired Hierarchical Multipleâ€Patterned Plasmonic Nanostructures. Small, 2018, 14, e1703890.	10.0	13
41	Ambipolar organic phototransistors based on 6,6′-dibromoindigo. RSC Advances, 2018, 8, 14747-14752.	3.6	13
42	Ultrasensitive artificial synapse based on conjugated polyelectrolyte. Nano Energy, 2018, 48, 575-581.	16.0	85
43	High-Performance Visible-Blind UV Phototransistors Based on n-Type Naphthalene Diimide Nanomaterials. ACS Applied Materials & Interfaces, 2018, 10, 11826-11836.	8.0	34
44	An efficient lactone-to-lactam conversion for the synthesis of thiophene Pechmann lactam and the characterization of polymers thereof. Polymer Chemistry, 2018, 9, 5234-5241.	3.9	2
45	Organic Transistor-Based Chemical Sensors for Wearable Bioelectronics. Accounts of Chemical Research, 2018, 51, 2829-2838.	15.6	130
46	Organic Electronics: Efficient and Air-Stable Aqueous-Processed Organic Solar Cells and Transistors: Impact of Water Addition on Processability and Thin-Film Morphologies of Electroactive Materials (Adv. Energy Mater. 34/2018). Advanced Energy Materials, 2018, 8, 1870149.	19.5	1
47	Highly Enantioselective Graphene-Based Chemical Sensors Prepared by Chiral Noncovalent Functionalization. ACS Applied Materials & Encountry Interfaces, 2018, 10, 36194-36201.	8.0	32
48	Chiral self-sorted multifunctional supramolecular biocoordination polymers and their applications in sensors. Nature Communications, 2018, 9, 3933.	12.8	85
49	Efficient and Airâ€Stable Aqueousâ€Processed Organic Solar Cells and Transistors: Impact of Water Addition on Processability and Thinâ€Film Morphologies of Electroactive Materials. Advanced Energy Materials, 2018, 8, 1802674.	19.5	52
50	Organic n-Channel Transistors Based on [1]Benzothieno[3,2- <i>b</i>)benzothiophene–Rylene Diimide Donor–Acceptor Conjugated Polymers. ACS Applied Materials & Lot, 32444-32453.	8.0	28
51	Boosting the performance and stability of quasi-two-dimensional tin-based perovskite solar cells using the formamidinium thiocyanate additive. Journal of Materials Chemistry A, 2018, 6, 18173-18182.	10.3	149
52	Reduced Pyronin B as a solution-processable and heating-free n-type dopant for soft electronics. Journal of Materials Chemistry C, 2018, 6, 6672-6679.	5 . 5	7
53	Wearable high-performance pressure sensors based on three-dimensional electrospun conductive nanofibers. NPG Asia Materials, 2018, 10, 540-551.	7.9	141
54	Recent advances in organic sensors for health self-monitoring systems. Journal of Materials Chemistry C, 2018, 6, 8569-8612.	5 . 5	110

#	Article	IF	CITATIONS
55	Organic Phototransistors Based on Selfâ€Assembled Microwires of ⟨i⟩n⟨/i⟩â€Type Distyrylbenzene Derivative. Asian Journal of Organic Chemistry, 2018, 7, 2302-2308.	2.7	4
56	A Role of Side-Chain Regiochemistry of Thienyleneâ€"Vinyleneâ€"Thienylene (TVT) in the Transistor Performance of Isomeric Polymers. Macromolecules, 2017, 50, 884-890.	4.8	49
57	Phototransistors: Highâ€Performance UV–Vis–NIR Phototransistors Based on Single rystalline Organic Semiconductor–Gold Hybrid Nanomaterials (Adv. Funct. Mater. 6/2017). Advanced Functional Materials, 2017, 27, .	14.9	0
58	High-Performance Furan-Containing Conjugated Polymer for Environmentally Benign Solution Processing. ACS Applied Materials & Samp; Interfaces, 2017, 9, 15652-15661.	8.0	46
59	Ethanol-Processable, Highly Crystalline Conjugated Polymers for Eco-Friendly Fabrication of Organic Transistors and Solar Cells. Macromolecules, 2017, 50, 4415-4424.	4.8	63
60	Solution-Assembled Blends of Regioregularity-Controlled Polythiophenes for Coexistence of Mechanical Resilience and Electronic Performance. ACS Applied Materials & Samp; Interfaces, 2017, 9, 14120-14128.	8.0	25
61	Supramolecular Nanostructures of Chiral Perylene Diimides with Amplified Chirality for Highâ€Performance Chiroptical Sensing. Advanced Materials, 2017, 29, 1605828.	21.0	129
62	Effect of alkyl chain spacer on charge transport in n-type dominant polymer semiconductors with a diketopyrrolopyrrole-thiophene-bithiazole acceptor–donor–acceptor unit. Journal of Materials Chemistry C, 2017, 5, 3616-3622.	5 . 5	23
63	Organic Transistors: Chemically Robust Ambipolar Organic Transistor Array Directly Patterned by Photolithography (Adv. Mater. 11/2017). Advanced Materials, 2017, 29, .	21.0	1
64	Highâ€Performance UV–Vis–NIR Phototransistors Based on Singleâ€Crystalline Organic Semiconductor–Gold Hybrid Nanomaterials. Advanced Functional Materials, 2017, 27, 1604528.	14.9	79
65	Chemically Robust Ambipolar Organic Transistor Array Directly Patterned by Photolithography. Advanced Materials, 2017, 29, 1605282.	21.0	59
66	Toward Environmentally Robust Organic Electronics: Approaches and Applications. Advanced Materials, 2017, 29, 1703638.	21.0	142
67	Point-of-Use Detection of Amphetamine-Type Stimulants with Host-Molecule-Functionalized Organic Transistors. CheM, 2017, 3, 641-651.	11.7	76
68	Phenyl Derivative of Dibenzothiopheno[6,5â€∢i>b::6′,5′â€∢i>f)Thieno[3,2â€∢i>b)Thiophene (DPhâ€DBTTT): High Thermally Durable Organic Semiconductor for Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Electronic Materials, 2017, 3, 1700142.	5.1	13
69	Morphogenesis and Optoelectronic Properties of Supramolecular Assemblies of Chiral Perylene Diimides in a Binary Solvent System. Scientific Reports, 2017, 7, 5508.	3.3	28
70	Structural Investigation of Chemiresistive Sensing Mechanism in Redox-Active Porous Coordination Network. Inorganic Chemistry, 2017, 56, 8735-8738.	4.0	14
71	Flexible Field-Effect Transistor-Type Sensors Based on Conjugated Molecules. CheM, 2017, 3, 724-763.	11.7	158
72	Highly Flexible Organic Nanofiber Phototransistors Fabricated on a Textile Composite for Wearable Photosensors. Advanced Functional Materials, 2016, 26, 1445-1453.	14.9	103

#	Article	IF	Citations
73	Semiconducting Carbon Nanotubes for Improved Efficiency and Thermal Stability of Polymer–Fullerene Solar Cells. Advanced Functional Materials, 2016, 26, 51-65.	14.9	54
74	Requirements for Forming Efficient 3-D Charge Transport Pathway in Diketopyrrolopyrrole-Based Copolymers: Film Morphology vs Molecular Packing. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12307-12315.	8.0	22
75	Siloxane Side Chains: A Universal Tool for Practical Applications of Organic Field-Effect Transistors. Macromolecules, 2016, 49, 3739-3748.	4.8	58
76	Ultra-narrow-bandgap thienoisoindigo polymers: structure–property correlations in field-effect transistors. Journal of Materials Chemistry C, 2016, 4, 9554-9560.	5.5	28
77	Side Chain Optimization of Naphthalenediimide–Bithiopheneâ€Based Polymers to Enhance the Electron Mobility and the Performance in Allâ€Polymer Solar Cells. Advanced Functional Materials, 2016, 26, 1543-1553.	14.9	155
78	Boosting the Performance of Organic Optoelectronic Devices Using Multipleâ€Patterned Plasmonic Nanostructures. Advanced Materials, 2016, 28, 4976-4982.	21.0	40
79	Two-dimensional polyaniline (C ₃ N) from carbonized organic single crystals in solid state. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7414-7419.	7.1	380
80	Effects of microwave-assisted annealing on the morphology and electrical performance of semiconducting polymer thin films. Organic Electronics, 2016, 30, 207-212.	2.6	7
81	Flexible Organic Phototransistor Array with Enhanced Responsivity via Metal–Ligand Charge Transfer. ACS Applied Materials & Interfaces, 2016, 8, 7291-7299.	8.0	72
82	Organic Electronics: Highly Sensitive and Selective Biosensors Based on Organic Transistors Functionalized with Cucurbit[6]uril Derivatives (Adv. Funct. Mater. 30/2015). Advanced Functional Materials, 2015, 25, 4920-4920.	14.9	0
83	Highly Conductive Graphene/Ag Hybrid Fibers for Flexible Fiber-Type Transistors. Scientific Reports, 2015, 5, 16366.	3.3	53
84	Highly Sensitive and Selective Biosensors Based on Organic Transistors Functionalized with Cucurbit[6]uril Derivatives. Advanced Functional Materials, 2015, 25, 4882-4888.	14.9	66
85	Highâ€Performance Flexible Organic Nanoâ€Floating Gate Memory Devices Functionalized with Cobalt Ferrite Nanoparticles. Small, 2015, 11, 4976-4984.	10.0	33
86	Molecular structure-device performance relationship in polymer solar cells based on indene-C60 bis-adduct derivatives. Korean Journal of Chemical Engineering, 2015, 32, 261-267.	2.7	16
87	Siloxaneâ€Based Hybrid Semiconducting Polymers Prepared by Fluorideâ€Mediated Suzuki Polymerization. Angewandte Chemie - International Edition, 2015, 54, 4657-4660.	13.8	20
88	Investigation of Structure–Property Relationships in Diketopyrrolopyrrole-Based Polymer Semiconductors via Side-Chain Engineering. Chemistry of Materials, 2015, 27, 1732-1739.	6.7	244
89	Highly Sensitive and Selective Liquidâ€Phase Sensors Based on a Solventâ€Resistant Organicâ€Transistor Platform. Advanced Materials, 2015, 27, 1540-1546.	21.0	57
90	Sensors: Highly Sensitive and Selective Liquidâ€Phase Sensors Based on a Solventâ€Resistant Organicâ€7ransistor Platform (Adv. Mater. 9/2015). Advanced Materials, 2015, 27, 1470-1470.	21.0	0

#	Article	IF	Citations
91	Nitrogenated holey two-dimensional structures. Nature Communications, 2015, 6, 6486.	12.8	923
92	Tuning Mechanical and Optoelectrical Properties of Poly(3-hexylthiophene) through Systematic Regioregularity Control. Macromolecules, 2015, 48, 4339-4346.	4.8	194
93	Importance of Electron Transport Ability in Naphthalene Diimide-Based Polymer Acceptors for High-Performance, Additive-Free, All-Polymer Solar Cells. Chemistry of Materials, 2015, 27, 5230-5237.	6.7	131
94	Effect of the alkyl spacer length on the electrical performance of diketopyrrolopyrrole-thiophene vinylene thiophene polymer semiconductors. Journal of Materials Chemistry C, 2015, 3, 11697-11704.	5.5	62
95	Water Processable Polythiophene Nanowires by Photo-Cross-Linking and Click-Functionalization. Nano Letters, 2015, 15, 5689-5695.	9.1	31
96	ZnO Nanowire Based Photoelectrical Resistive Switches for Flexible Memory. Journal of the Electrochemical Society, 2015, 162, H713-H718.	2.9	12
97	Use of heteroaromatic spacers in isoindigo-benzothiadiazole polymers for ambipolar charge transport. Physical Chemistry Chemical Physics, 2015, 17, 26512-26518.	2.8	9
98	<i>·Îµ</i> â€Branched Flexible Side Chain Substituted Diketopyrrolopyrroleâ€Containing Polymers Designed for High Hole and Electron Mobilities. Advanced Functional Materials, 2015, 25, 247-254.	14.9	108
99	Photoinduced Chargeâ€Carrier Dynamics of Phototransistors Based on Perylene Diimide/Reduced Graphene Oxide Core/Shell p–n Junction Nanowires. Advanced Optical Materials, 2015, 3, 241-247.	7.3	22
100	Fabrication of One-Dimensional Organic Nanomaterials and Their Optoelectronic Applications. Journal of Nanoscience and Nanotechnology, 2014, 14, 1282-1302.	0.9	18
101	Direct Solvothermal Synthesis of B/Nâ€Doped Graphene. Angewandte Chemie - International Edition, 2014, 53, 2398-2401.	13.8	61
102	Graphene–Ruthenium Complex Hybrid Photodetectors with Ultrahigh Photoresponsivity. Small, 2014, 10, 3700-3706.	10.0	35
103	Acceptor–acceptor type isoindigo-based copolymers for high-performance n-channel field-effect transistors. Chemical Communications, 2014, 50, 2180.	4.1	7 3
104	Determining Optimal Crystallinity of Diketopyrrolopyrrole-Based Terpolymers for Highly Efficient Polymer Solar Cells and Transistors. Chemistry of Materials, 2014, 26, 6963-6970.	6.7	130
105	Fluorinated Benzothiadiazole (BT) Groups as a Powerful Unit for High-Performance Electron-Transporting Polymers. ACS Applied Materials & Samp; Interfaces, 2014, 6, 20390-20399.	8.0	53
106	Enhancing 2D growth of organic semiconductor thin films with macroporous structures via a small-molecule heterointerface. Nature Communications, 2014, 5, 4752.	12.8	138
107	Ambipolar Semiconducting Polymers with ⟨i⟩Ï€-⟨ i⟩Spacer Linked Bis-Benzothiadiazole Blocks as Strong Accepting Units. Chemistry of Materials, 2014, 26, 4933-4942.	6.7	53
108	Naphthalene Diimide Incorporated Thiophene-Free Copolymers with Acene and Heteroacene Units: Comparison of Geometric Features and Electron-Donating Strength of Co-units. Chemistry of Materials, 2013, 25, 3251-3259.	6.7	91

#	Article	IF	CITATIONS
109	Influence of intermolecular interactions of electron donating small molecules on their molecular packing and performance in organic electronic devices. Journal of Materials Chemistry A, 2013, 1, 14538.	10.3	86
110	Waferâ€Scale Patterning of Reduced Graphene Oxide Electrodes by Transferâ€andâ€Reverse Stamping for High Performance OFETs. Small, 2013, 9, 2817-2825.	10.0	17
111	Electrical Transport through Single Nanowires of Dialkyl Perylene Diimide. Journal of Physical Chemistry C, 2013, 117, 10743-10749.	3.1	26
112	Visibleâ€Near Infrared Absorbing Polymers Containing Thienoisoindigo and Electronâ€Rich Units for Organic Transistors with Tunable Polarity. Advanced Functional Materials, 2013, 23, 5317-5325.	14.9	77
113	Boosting the Ambipolar Performance of Solution-Processable Polymer Semiconductors via Hybrid Side-Chain Engineering. Journal of the American Chemical Society, 2013, 135, 9540-9547.	13.7	460
114	Nitrogen-Doped Graphene Nanoplatelets from Simple Solution Edge-Functionalization for n-Type Field-Effect Transistors. Journal of the American Chemical Society, 2013, 135, 8981-8988.	13.7	113
115	Polarity and Air-Stability Transitions in Field-Effect Transistors Based on Fullerenes with Different Solubilizing Groups. ACS Applied Materials & Solubilizing Groups. ACS Applied Materials & Solubilizing Groups. ACS Applied Materials & Solubilizing Groups.	8.0	24
116	Highâ€Performance Phototransistors Based on Singleâ€Crystalline nâ€Channel Organic Nanowires and Photogenerated Chargeâ€Carrier Behaviors. Advanced Functional Materials, 2013, 23, 629-639.	14.9	177
117	Observation of orientation-dependent photovoltaic behaviors in aligned organic nanowires. Applied Physics Letters, 2013, 103, .	3.3	8
118	Largeâ€Scale Graphene Micropattern Nanoâ€biohybrids: Highâ€Performance Transducers for FETâ€Type Flexible Fluidic HIV Immunoassays. Advanced Materials, 2013, 25, 4177-4185.	21.0	97
119	Tuning polarity and improving charge transport in organic semiconductors. , 2013, , .		0
120	Flexible FET-Type VEGF Aptasensor Based on Nitrogen-Doped Graphene Converted from Conducting Polymer. ACS Nano, 2012, 6, 1486-1493.	14.6	232
121	Solution-Processable Ambipolar Diketopyrrolopyrrole–Selenophene Polymer with Unprecedentedly High Hole and Electron Mobilities. Journal of the American Chemical Society, 2012, 134, 20713-20721.	13.7	341
122	Impact of regioregularity on thin-film transistor and photovoltaic cell performances of pentacene-containing polymers. Journal of Materials Chemistry, 2012, 22, 4356.	6.7	14
123	Organic Transistors: Inversion of Dominant Polarity in Ambipolar Polydiketopyrrolopyrrole with Thermally Removable Groups (Adv. Funct. Mater. 19/2012). Advanced Functional Materials, 2012, 22, 4182-4182.	14.9	1
124	Solvent-Resistant Organic Transistors and Thermally Stable Organic Photovoltaics Based on Cross-linkable Conjugated Polymers. Chemistry of Materials, 2012, 24, 215-221.	6.7	154
125	β-Alkyl substituted Dithieno[2,3- <i>d</i> ;2′,3′ <i>d</i> ê²-Jbenzo[1,2- <i>b</i> ;4,5- <i>b</i> ê²-Jdithiophene Semiconducting Materials and Their Application to Solution-Processed Organic Transistors. Chemistry of Materials, 2012, 24, 3464-3472.	6.7	40
126	Inversion of Dominant Polarity in Ambipolar Polydiketopyrrolopyrrole with Thermally Removable Groups. Advanced Functional Materials, 2012, 22, 4128-4138.	14.9	87

#	Article	IF	Citations
127	Solution-Shear-Processed Quaterrylene Diimide Thin-Film Transistors Prepared by Pressure-Assisted Thermal Cleavage of Swallow Tails. Journal of the American Chemical Society, 2011, 133, 4204-4207.	13.7	68
128	Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nature Communications, 2011, 2, 541.	12.8	333
129	Arylâ^'Perfluoroaryl Substituted Tetracene: Induction of Face-to-Face Ï€â^'Ï€ Stacking and Enhancement of Charge Carrier Properties. Chemistry of Materials, 2011, 23, 1646-1649.	6.7	135
130	Highâ€Mobility Airâ€Stable Solutionâ€Shearâ€Processed nâ€Channel Organic Transistors Based on Coreâ€Chlorinated Naphthalene Diimides. Advanced Functional Materials, 2011, 21, 4173-4181.	14.9	82
131	Highâ€Performance Airâ€Stable nâ€Type Organic Transistors Based on Coreâ€Chlorinated Naphthalene Tetracarboxylic Diimides. Advanced Functional Materials, 2010, 20, 2148-2156.	14.9	221
132	A Crystalâ€Engineered Hydrogenâ€Bonded Octachloroperylene Diimide with a Twisted Core: An nâ€Channel Organic Semiconductor. Angewandte Chemie - International Edition, 2010, 49, 740-743.	13.8	337
133	Molecular n-type doping for air-stable electron transport in vacuum-processed n-channel organic transistors. Applied Physics Letters, 2010, 97, .	3.3	75
134	Organic n-channel thin film transistors based on dichlorinated naphthalene diimides. , 2010, , .		11
135	Use of a 1 <i>H</i> -Benzoimidazole Derivative as an <i>n</i> -Type Dopant and To Enable Air-Stable Solution-Processed <i>n</i> -Channel Organic Thin-Film Transistors. Journal of the American Chemical Society, 2010, 132, 8852-8853.	13.7	353
136	Solution-processed flexible organic transistors showing very-low subthreshold slope with a bilayer polymeric dielectric on plastic. Applied Physics Letters, 2009, 94, 203301.	3.3	37
137	Solution-processed, high-performance n-channel organic microwire transistors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6065-6070.	7.1	218
138	The Role of OTS Density on Pentacene and C ₆₀ Nucleation, Thin Film Growth, and Transistor Performance. Advanced Functional Materials, 2009, 19, 1962-1970.	14.9	227
139	Direct Patterning of Organicâ€Thinâ€Filmâ€Transistor Arrays via a "Dryâ€Taping―Approach. Advanced Materials, 2009, 21, 1266-1270.	21.0	50
140	Lyotropic Liquidâ€Crystalline Solutions of Highâ€Concentration Dispersions of Singleâ€Walled Carbon Nanotubes with Conjugated Polymers. Small, 2009, 5, 1019-1024.	10.0	55
141	High-Performance Air-Stable n-Channel Organic Thin Film Transistors Based on Halogenated Perylene Bisimide Semiconductors. Journal of the American Chemical Society, 2009, 131, 6215-6228.	13.7	619
142	Crystalline Ultrasmooth Self-Assembled Monolayers of Alkylsilanes for Organic Field-Effect Transistors. Journal of the American Chemical Society, 2009, 131, 9396-9404.	13.7	562
143	Interplay between Energetic and Kinetic Factors on the Ambient Stability of n-Channel Organic Transistors Based on Perylene Diimide Derivatives. Chemistry of Materials, 2009, 21, 5508-5518.	6.7	84
144	Chlorination: A General Route toward Electron Transport in Organic Semiconductors. Journal of the American Chemical Society, 2009, 131, 3733-3740.	13.7	334

#	Article	IF	Citations
145	Air-stable n-channel organic thin-film transistors with high field-effect mobility based on N,Nâ \in 2-bis(heptafluorobutyl)-3,4:9,10-perylene diimide. Applied Physics Letters, 2007, 91, .	3.3	147
146	Coreâ€Fluorinated Perylene Bisimide Dyes: Air Stable nâ€Channel Organic Semiconductors for Thin Film Transistors with Exceptionally High Onâ€toâ€Off Current Ratios. Advanced Materials, 2007, 19, 3692-3695.	21.0	230
147	Fabrication of Photoluminescent Dyes/Poly(acrylonitrile) Coaxial Nanotubes Using Vapor Deposition Polymerization. Chemistry of Materials, 2006, 18, 5002-5008.	6.7	38
148	Fabrication of Photoluminescent-Dye Embedded Poly(methyl methacrylate) Nanofibers and Their Fluorescence Resonance Energy Transfer Properties. Advanced Materials, 2006, 18, 2216-2219.	21.0	79
149	Fabrication of a Highly Transparent Conductive Thin Film from Polypyrrole/Poly(methyl methacrylate) Core/Shell Nanospheres. Advanced Functional Materials, 2005, 15, 494-502.	14.9	151
150	A Top-Down Approach to Fullerene Fabrication Using a Polymer Nanoparticle Precursor. Advanced Materials, 2004, 16, 1650-1653.	21.0	30
151	Morphogenesis of Evaporation-Induced Self-Assemblies of Polypyrrole Nanoparticles Dispersed in a Liquid Medium. Langmuir, 2004, 20, 8419-8422.	3.5	22
152	Facile fabrication of polymer and carbon nanocapsules using polypyrrole core/shell nanomaterialsElectronic Supplementary Information (ESI) available: Experimental details for the synthesis and carbonization of PPy nanocapsules, instrumentation, XRD pattern and Raman spectrum. See http://www.rsc.org/suppdata/cc/b3/b316881f/. Chemical Communications, 2004, , 794.	4.1	71
153	A novel synthesis of nanocapsules using identical polymer core/shell nanospheres. Journal of Materials Chemistry, 2004, 14, 2872.	6.7	45
154	A facile synthesis of polypyrrole nanotubes using a template-mediated vapor deposition polymerization and the conversion to carbon nanotubes. Chemical Communications, 2004, , 882.	4.1	92
155	Facile Fabrication of Photochromic Dye–Conducting Polymer Core–Shell Nanomaterials and Their Photoluminescence. Advanced Materials, 2003, 15, 977-980.	21.0	121
156	Novel crystalline supramolecular assemblies of amorphous polypyrrole nanoparticles through surfactant templatingElectronic supplementary information (ESI) available: FT-IR spectrum and the peak assignment of PPy nanoparticles. See http://www.rsc.org/suppdata/cc/b2/b207744m/. Chemical Communications, 2002, , 2200-2201.	4.1	75
157	Curing behavior of tetrafunctional epoxy resin/hyperbranched polymer system. Polymer, 2001, 42, 8339-8347.	3.8	69
158	Crystallization Behavior of Poly(ethylene terephthalate) Blended with Hyperbranched Polymers:Â The Effect of Terminal Groups and Composition of Hyperbranched Polymers. Macromolecules, 2000, 33, 1864-1870.	4.8	44
159	In situ FT-IR spectroscopic investigation on the microstructure of hyperbranched aliphatic polyesters. Polymer, 1999, 40, 5985-5992.	3.8	16