M Raza Zaidi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7410618/publications.pdf

Version: 2024-02-01

394421 552781 3,249 29 19 26 citations h-index g-index papers 35 35 35 7124 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Two Faces of Interferon-Î ³ in Cancer. Clinical Cancer Research, 2011, 17, 6118-6124.	7.0	506
2	Hippo-Independent Activation of YAP by the GNAQ Uveal Melanoma Oncogene through a Trio-Regulated Rho GTPase Signaling Circuitry. Cancer Cell, 2014, 25, 831-845.	16.8	471
3	TAMeless traitors: macrophages in cancer progression and metastasis. British Journal of Cancer, 2017, 117, 1583-1591.	6.4	471
4	Interferon-Î ³ links ultraviolet radiation to melanomagenesis in mice. Nature, 2011, 469, 548-553.	27.8	264
5	Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment. Nature Communications, 2012, 3, 884.	12.8	249
6	HMGA2 Is a Driver of Tumor Metastasis. Cancer Research, 2013, 73, 4289-4299.	0.9	248
7	A Polymorphism in IRF4 Affects Human Pigmentation through a Tyrosinase-Dependent MITF/TFAP2A Pathway. Cell, 2013, 155, 1022-1033.	28.9	184
8	The Interferon-Gamma Paradox in Cancer. Journal of Interferon and Cytokine Research, 2019, 39, 30-38.	1.2	112
9	mTORC1 Activation Blocks BrafV600E-Induced Growth Arrest but Is Insufficient for Melanoma Formation. Cancer Cell, 2015, 27, 41-56.	16.8	106
10	Interferon- \hat{l}^3 Signaling in Melanocytes and Melanoma Cells Regulates Expression of CTLA-4. Cancer Research, 2018, 78, 436-450.	0.9	96
11	Misexpression of Full-length HMGA2 Induces Benign Mesenchymal Tumors in Mice. Cancer Research, 2006, 66, 7453-7459.	0.9	80
12	Upregulation of PD-L1 via HMGB1-Activated IRF3 and NF-κB Contributes to UV Radiation-Induced Immune Suppression. Cancer Research, 2019, 79, 2909-2922.	0.9	77
13	Loss of ELF5–FBXW7 stabilizes IFNGR1 to promote the growth and metastasis of triple-negative breast cancer through interferon-γ signalling. Nature Cell Biology, 2020, 22, 591-602.	10.3	67
14	Melanoblast transcriptome analysis reveals pathways promoting melanoma metastasis. Nature Communications, 2020, 11, 333.	12.8	65
15	Genetically engineered mouse models of melanoma. Cancer, 2017, 123, 2089-2103.	4.1	62
16	From UVs to Metastases: Modeling Melanoma Initiation and Progression in the Mouse. Journal of Investigative Dermatology, 2008, 128, 2381-2391.	0.7	61
17	A genetically engineered mouse model with inducible GFP expression in melanocytes. Pigment Cell and Melanoma Research, 2011, 24, 393-394.	3.3	28
18	Programming of donor T cells using allogeneic Î'-like ligand 4–positive dendritic cells to reduce GVHD in mice. Blood, 2016, 127, 3270-3280.	1.4	22

#	Article	IF	CITATIONS
19	Shedding Light on Melanocyte Pathobiology In Vivo : Figure 1 Cancer Research, 2012, 72, 1591-1595.	0.9	19
20	The heterogeneity of store-operated calcium entry in melanoma. Science China Life Sciences, 2016, 59, 764-769.	4.9	14
21	Macroenvironment-gene-microenvironment interactions in ultraviolet radiation-induced melanomagenesis. Advances in Cancer Research, 2019, 144, 1-54.	5.0	14
22	<i>In Vivo</i> Role of Alternative Splicing and Serine Phosphorylation of the Microphthalmia-Associated Transcription Factor. Genetics, 2012, 191, 133-144.	2.9	10
23	Gadd45 in Senescence. Advances in Experimental Medicine and Biology, 2022, 1360, 109-116.	1.6	8
24	Spatiotemporal Labeling of Melanocytes in Mice. International Journal of Molecular Sciences, 2018, 19, 1469.	4.1	4
25	Biology of Melanocytes and Primary Melanoma. , 2020, , 3-40.		4
26	Interferonâ€gamma induces melanogenesis via postâ€ŧranslational regulation of tyrosinase. Pigment Cell and Melanoma Research, 2022, 35, 342-355.	3. 3	4
27	Fluorescent Protein-Assisted Purification for Gene Expression Profiling. Methods in Molecular Biology, 2011, 699, 393-405.	0.9	2
28	<scp>STIM</scp> 1 (c) <scp>AMP</scp> s up melanogenesis. EMBO Journal, 2018, 37, .	7.8	0
29	Biology of Melanocytes and Primary Melanoma. , 2019, , 1-38.		O