
## M Julia CristÃ<sup>3</sup>bal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7409585/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Effect of Carbon Nanotube Content and Mechanical Milling Conditions on the Manufacture of AA7075/MWCNT Composites. Metals, 2022, 12, 1020.                                                                                                                | 2.3 | 2         |
| 2  | MWCNT-Reinforced AA7075 Composites: Effect of Reinforcement Percentage on Mechanical Properties.<br>Metals, 2021, 11, 969.                                                                                                                                | 2.3 | 11        |
| 3  | Electrochemical study of the surface metal matrix composite developed on AA 2024-T351 by the friction stir process. Corrosion Engineering Science and Technology, 2019, 54, 715-725.                                                                      | 1.4 | 14        |
| 4  | Microstructure and Wear Properties of Surface Composite Layer Produced by Friction Stir Processing<br>(FSP) in AA2024-T351 Aluminum Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy<br>and Materials Science, 2019, 50, 2860-2874. | 2.2 | 10        |
| 5  | Dissolution and passivation of aluminide coatings on model and Ni-based superalloy. Surface and Coatings Technology, 2019, 357, 1037-1047.                                                                                                                | 4.8 | 18        |
| 6  | Evolution of corrosion behavior for AA7075 aluminum alloy implanted with nitrogen. Nuclear<br>Instruments & Methods in Physics Research B, 2019, 442, 1-12.                                                                                               | 1.4 | 11        |
| 7  | Friction stir processing strategies to develop a surface composite layer on AA6061-T6. Materials and<br>Manufacturing Processes, 2018, 33, 1133-1140.                                                                                                     | 4.7 | 25        |
| 8  | Microstructure and mechanical properties of Al/SiC composite surface layer produced by friction stir processing. Ciência & Tecnologia Dos Materiais, 2017, 29, e82-e86.                                                                                   | 0.5 | 12        |
| 9  | Wear and corrosion performance of two different tempers (T6 and T73) of AA7075 aluminium alloy after nitrogen implantation. Applied Surface Science, 2015, 327, 51-61.                                                                                    | 6.1 | 45        |
| 10 | Influence of molybdenum ion implantation on the localized corrosion resistance of a high strength aluminium alloy. Corrosion Science, 2012, 54, 143-152.                                                                                                  | 6.6 | 31        |
| 11 | Tribological behaviour of aluminium alloy AA7075 after ion implantation. Surface and Coatings<br>Technology, 2012, 209, 124-130.                                                                                                                          | 4.8 | 13        |
| 12 | An XPS analysis of the oxide surface layers formed on a friction stir processed magnesium alloy.<br>Surface and Interface Analysis, 2012, 44, 1030-1034.                                                                                                  | 1.8 | 13        |
| 13 | Passive layers developed on different tempers of AA7075 aluminium alloy after molybdenum implantation. Surface and Interface Analysis, 2012, 44, 1039-1044.                                                                                               | 1.8 | 5         |
| 14 | Effect of nitrogen and molybdenum ion implantation in the tribological behavior of AA7075 aluminum alloy. Wear, 2012, 276-277, 53-60.                                                                                                                     | 3.1 | 34        |
| 15 | Mo implantation in austenitic stainless steels: effect on the corrosion resistance in chloride acidic media. Surface and Interface Analysis, 2010, 42, 621-625.                                                                                           | 1.8 | 2         |
| 16 | Influence of nitrogen implantation on the localized corrosion resistance of different tempers of AA7075 aluminium alloy. Surface and Interface Analysis, 2010, 42, 636-640.                                                                               | 1.8 | 6         |
| 17 | An XPS study on the influence of nitrogen implantation on the passive layers developed on different tempers of AA7075 aluminum alloy. Surface and Interface Analysis, 2010, 42, 592-596.                                                                  | 1.8 | 15        |
| 18 | Microstructure of the passive layer formed on AA2024â€₹3 aluminum alloy surface implanted with nitrogen. Surface and Interface Analysis, 2008, 40, 290-293.                                                                                               | 1.8 | 5         |

M Julia CristÃ<sup>3</sup>bal

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Effect of chromium and nitrogen coâ€implantation on the characteristics of the passive layer developed on austenitic and duplex stainless steels. Surface and Interface Analysis, 2008, 40, 294-298.                        | 1.8 | 4         |
| 20 | Electrochemical behaviour of an AISI 304L stainless steel implanted with nitrogen. Electrochimica Acta, 2008, 53, 6000-6007.                                                                                                | 5.2 | 35        |
| 21 | An insight on the role of Nickel in the passive films generated on different stainless steels. , 2006, , 29-34.                                                                                                             |     | 0         |
| 22 | XPS study of passive films generated on AISI 430 ferritic stainless steel implanted with nitrogen and chromium plus nitrogen. Surface and Interface Analysis, 2006, 38, 851-853.                                            | 1.8 | 6         |
| 23 | Effect of surface preparation on the evolution of the passive films formed on AISI 304L. Surface and<br>Interface Analysis, 2006, 38, 259-262.                                                                              | 1.8 | 1         |
| 24 | The effect of Ni in the electrochemical properties of oxide layers grown on stainless steels.<br>Electrochimica Acta, 2006, 51, 2991-3000.                                                                                  | 5.2 | 119       |
| 25 | Long-term behaviour of AISI 304L passive layer in chloride containing medium. Electrochimica Acta, 2006, 51, 1881-1890.                                                                                                     | 5.2 | 86        |
| 26 | The effect of the Cerium ion implantation in the passive films properties of a duplex stainless steel. , 2006, , 47-52.                                                                                                     |     | 1         |
| 27 | Electrochemical Impedance Spectroscopy as a Tool for Studying Steel Corrosion Inhibition in<br>Simulated Concrete Environments—Red Mud Used as Rebar Corrosion Inhibitor. Journal of ASTM<br>International, 2006, 3, 11785. | 0.2 | 19        |
| 28 | The effect of Al3+ in the passivity of iron in alkaline media containing chlorides. , 2006, , 107-112.                                                                                                                      |     | 0         |
| 29 | High frequency impedance spectroscopy study of passive films formed on AISI 316 stainless steel in alkaline medium. Journal of Electroanalytical Chemistry, 2004, 572, 335-345.                                             | 3.8 | 110       |
| 30 | Comparative study of passive films of different stainless steels developed on alkaline medium.<br>Electrochimica Acta, 2004, 49, 3049-3056.                                                                                 | 5.2 | 115       |
| 31 | Influence of chromium and cerium implantation in the electrochemical development of passive layers on AISI 304L. Electrochimica Acta, 2004, 49, 3057-3065.                                                                  | 5.2 | 19        |
| 32 | Análisis de las pelÃculas pasivas generadas en aceros inoxidables implantados con cromo. Revista De<br>Metalurgia, 2004, 40, 224-229.                                                                                       | 0.5 | 0         |
| 33 | Modifications of the stainless steels passive film induced by cerium implantation. Surface and<br>Coatings Technology, 2002, 158-159, 582-587.                                                                              | 4.8 | 23        |
| 34 | Characterisation of the electrochemical behaviour of cerium implanted stainless steels.<br>Electrochimica Acta, 2002, 47, 2215-2222.                                                                                        | 5.2 | 28        |
| 35 | Effects of yttrium and erbium ion implantation on the AISI 304 stainless steel passive layer. Thin Solid Films, 2002, 414, 231-238.                                                                                         | 1.8 | 23        |
| 36 | Galvanic coupling between carbon steel and austenitic stainless steel in alkaline media.<br>Electrochimica Acta, 2002, 47, 2271-2279.                                                                                       | 5.2 | 65        |

M JULIA CRISTÃ<sup>3</sup>BAL

| #  | Article                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Comportamiento electroquÃmico de un acero inoxidable AISI 430 implantado con cerio. Revista De<br>Metalurgia, 2002, 38, 315-325.                                      | 0.5 | 5         |
| 38 | Title is missing!. Oxidation of Metals, 2001, 55, 105-118.                                                                                                            | 2.1 | 49        |
| 39 | Title is missing!. Oxidation of Metals, 2001, 55, 165-175.                                                                                                            | 2.1 | 21        |
| 40 | Towards high temperature materials performance through ion implantation. Materials and Corrosion<br>- Werkstoffe Und Korrosion, 2000, 51, 344-349.                    | 1.5 | 3         |
| 41 | Effect of yttrium and erbium ion implantation on the oxidation behaviour of the AISI 304 austenitic steel. Surface and Coatings Technology, 2000, 126, 116-122.       | 4.8 | 32        |
| 42 | Title is missing!. Oxidation of Metals, 2000, 54, 87-101.                                                                                                             | 2.1 | 15        |
| 43 | The influence of implanted silicon on the cyclic oxidation behaviour of two different stainless steels.<br>Surface and Coatings Technology, 1999, 120-121, 442-447.   | 4.8 | 38        |
| 44 | The Use of Ion Implantation to Study the Influence of Yttrium on the Oxidation Behaviour of PM Chromium. Materials Science Forum, 1997, 251-254, 259-266.             | 0.3 | 1         |
| 45 | Studies of the Oxidation Mechanism of Yttrium Implanted Chromium Using XAFS and GAXRD. European Physical Journal Special Topics, 1997, 7, C2-1205-C2-1206.            | 0.2 | 1         |
| 46 | A study of the initial stages of oxidation of yttrium-implanted chromium using X-ray diffraction and absorption spectroscopy. Corrosion Science, 1996, 38, 805-822.   | 6.6 | 45        |
| 47 | The influence of yttrium ion implantation on the oxidation behaviour of powder metallurgically produced chromium. Surface and Coatings Technology, 1996, 83, 205-211. | 4.8 | 79        |
| 48 | Analysis of the Passive Layer Developed on Two Stainless Steels Co-Implanted with Chromium and<br>Nitrogen. Materials Science Forum, 0, 587-588, 800-804.             | 0.3 | 0         |
| 49 | Microstructure of the Passive Layer Formed on Different Austenitic Stainless Steels Implanted with<br>Molybdenum. Defect and Diffusion Forum, 0, 289-292, 175-184.    | 0.4 | 4         |
| 50 | An Insight on the Influence of Ion Implantation on the Pitting Corrosion Resistance of AISI 430<br>Stainless Steel. Defect and Diffusion Forum, 0, 289-292, 501-508.  | 0.4 | 2         |