Limei Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7407662/publications.pdf

Version: 2024-02-01

		331670	276875
58	1,856	21	41
papers	citations	h-index	g-index
50	50	50	1507
59	59	59	1507
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage. Renewable and Sustainable Energy Reviews, 2021, 135, 110127.	16.4	307
2	Bioinspired marine antifouling coatings: Status, prospects, and future. Progress in Materials Science, 2022, 124, 100889.	32.8	181
3	Synergistic Photodynamic and Photothermal Antibacterial Nanocomposite Membrane Triggered by Single NIR Light Source. ACS Applied Materials & Single NIR Light Source.	8.0	166
4	Lotus-leaf-inspired hierarchical structured surface with non-fouling and mechanical bactericidal performances. Chemical Engineering Journal, 2020, 398, 125609.	12.7	145
5	Flexible and Stretchable 3ï‰ Sensors for Thermal Characterization of Human Skin. Advanced Functional Materials, 2017, 27, 1701282.	14.9	90
6	Near-infrared light triggered photodynamic and nitric oxide synergistic antibacterial nanocomposite membrane. Chemical Engineering Journal, 2021, 417, 128049.	12.7	84
7	Recent advances in emerging integrated antifouling and anticorrosion coatings. Materials and Design, 2022, 213, 110307.	7.0	59
8	Bioinspired photocatalytic ZnO/Au nanopillar-modified surface for enhanced antibacterial and antiadhesive property. Chemical Engineering Journal, 2020, 398, 125575.	12.7	53
9	Heat transfer characteristics and compatibility of molten salt/ceramic porous composite phase change material. Nano Energy, 2022, 100, 107476.	16.0	49
10	Antifouling Technology Trends in Marine Environmental Protection. Journal of Bionic Engineering, 2021, 18, 239-263.	5.0	48
11	Nanofiber Composite Coating with Self-Healing and Active Anticorrosive Performances. ACS Applied Materials & Description (2011), 13, 57880-57892.	8.0	47
12	Antifouling performance and mechanism of elastic graphene–silicone rubber composite membranes. Journal of Materials Chemistry B, 2019, 7, 488-497.	5.8	43
13	A facile antifogging/frost-resistant coating with self-healing ability. Chemical Engineering Journal, 2019, 378, 122173.	12.7	40
14	Tribological and anticorrosion behavior of self-healing coating containing nanocapsules. Tribology International, 2019, 136, 332-341.	5.9	30
15	Small Structure, Large Effect: Functional Surfaces Inspired by <i>Salvinia</i> Leaves. Small Structures, 2021, 2, 2100079.	12.0	29
16	Bioinspired PDMS–Phosphor–Silicone Rubber Sandwich‧tructure Coatings for Combating Biofouling. Advanced Materials Interfaces, 2020, 7, 1901577.	3.7	28
17	Anti-wear properties of the molluscan shell Scapharca subcrenata: Influence of surface morphology, structure and organic material on the elementary wear process. Materials Science and Engineering C, 2014, 42, 7-14.	7.3	27
18	Toward the Application of Graphene for Combating Marine Biofouling. Advanced Sustainable Systems, 2021, 5, .	5.3	27

#	Article	IF	CITATIONS
19	Biocompatible mechano-bactericidal nanopatterned surfaces with salt-responsive bacterial release. Acta Biomaterialia, 2022, 141, 198-208.	8.3	23
20	Bio-inspired Graphene-enhanced Thermally Conductive Elastic Silicone Rubber as Drag Reduction Material. Journal of Bionic Engineering, 2017, 14, 130-140.	5.0	22
21	Combined Effects of Color and Elastic Modulus on Antifouling Performance: A Study of Graphene Oxide/Silicone Rubber Composite Membranes. Materials, 2019, 12, 2608.	2.9	22
22	Bioâ€Inspired Nonâ€Bactericidal Coating Used for Antibiofouling. Advanced Materials Technologies, 2019, 4, 1800480.	5.8	22
23	Formation and Antibacterial Performance of Metal–Organic Framework Films <i>via</i> Dopamine-Mediated Fast Assembly under Visible Light. ACS Sustainable Chemistry and Engineering, 2020, 8, 15834-15842.	6.7	22
24	Bioinspired nanopillar surface for switchable mechano-bactericidal and releasing actions. Journal of Hazardous Materials, 2022, 432, 128685.	12.4	21
25	Thermoresponsive Nanostructures: From Mechano-Bactericidal Action to Bacteria Release. ACS Applied Materials & Samp; Interfaces, 2021, 13, 60865-60877.	8.0	21
26	Bio-inspired Superhydrophobic Self-healing Surfaces with Synergistic Anticorrosion Performance. Journal of Bionic Engineering, 2020, 17, 1196-1208.	5.0	19
27	A Remaining Useful Life Prediction Approach Based on Low-Frequency Current Data for Bearings in Spacecraft. IEEE Sensors Journal, 2021, 21, 18978-18989.	4.7	19
28	A simple quinoline derivative as fluorescent probe with high sensitivity and selectivity for Al3+ in aqueous solution. Tetrahedron Letters, 2018, 59, 4110-4115.	1.4	18
29	Highly efficient antifogging and frost-resisting acrylic coatings from one-step thermal curing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124160.	4.7	16
30	Two preparation processes for anti-corrosion and self-healing epoxy coatings containing the poly (calcium alginate) microcapsules loaded with tung oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128600.	4.7	16
31	Component-dependent thermal properties of molten salt eutectics for solar thermal energy storage: Experiments, molecular simulation and applications. Applied Thermal Engineering, 2022, 209, 118333.	6.0	16
32	Surprisingly fast assembly of the MOF film for synergetic antibacterial phototherapeutics. Green Chemistry, 2022, 24, 5930-5940.	9.0	13
33	Anti-adhesive and bactericidal polymeric coating based on Schiff-base reaction. Materials Letters, 2019, 250, 182-185.	2.6	9
34	Dynamically oleophobic epoxy coating with surface enriched in silicone. Progress in Organic Coatings, 2021, 154, 106170.	3.9	9
35	Metal-organic framework (MOF)-based slippery liquid-infused porous surface (SLIPS) for purely physical antibacterial applications. Applied Materials Today, 2022, 27, 101430.	4.3	9
36	The study of the efficiency enhancement of bionic coupling centrifugal pumps. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2013, 35, 517-524.	1.6	8

#	Article	IF	Citations
37	Parylene F coatings for combating marine biofouling. Materials Letters, 2021, 285, 129141.	2.6	8
38	An antiadhesion and antibacterial platform based on parylene F coatings. Progress in Organic Coatings, 2021, 151, 106021.	3.9	7
39	A synergistic antibacterial platform: combining mechanical and photothermal effects based on Van-MoS ₂ –Au nanocomposites. Nanotechnology, 2021, 32, 085102.	2.6	7
40	Mechanically Enhanced Self-Stratified Acrylic/Silicone Antifouling Coatings. Coatings, 2022, 12, 232.	2.6	7
41	Improved flow performance of a centrifugal compressor based on pit formation on the notum of the whirligig beetle (Gyrinidae Latreille). Advances in Mechanical Engineering, 2015, 7, 168781401559173.	1.6	6
42	Exploring the antifouling effect of elastic deformation by DEM–CFD coupling simulation. RSC Advances, 2019, 9, 40855-40862.	3.6	6
43	A chromone derivative as a colorimetric and "ON-OFF-ON―fluorescent probe for highly sensitive and selective detection of Cu2+ and S2â°. Inorganica Chimica Acta, 2021, 519, 120280.	2.4	6
44	Exploring the antifouling performance of non-bactericidal and bactericidal film for combating marine biofouling. Journal of the Taiwan Institute of Chemical Engineers, 2021, 126, 270-277.	5.3	6
45	Drag reduction performance and mechanism of a thermally conductive elastic wall in internal flow. Applied Thermal Engineering, 2017, 123, 1152-1157.	6.0	5
46	Novel Anti-fouling Strategies of Live and Dead Soft Corals (Sarcophyton trocheliophorum): Combined Physical and Chemical Mechanisms. Journal of Bionic Engineering, 2020, 17, 677-685.	5.0	5
47	The rigidizable behavior of the deployable hindwings of the Asian ladybeetle during flight. Journal of Materials Science, 2021, 56, 5670-5683.	3.7	5
48	A customized model for 3D human segmental kinematic coupling analysis by optoelectronic stereophotogrammetry. Science China Technological Sciences, 2010, 53, 2947-2953.	4.0	4
49	Effects and Mechanisms of Surface Topography on the Antiwear Properties of Molluscan Shells (<i>Scapharca subcrenata</i>) Using the Fluid-Solid Interaction Method. Scientific World Journal, The, 2014, 2014, 1-12.	2.1	4
50	Aluminum nitride–filled elastic silicone rubber composites for drag reduction. Advances in Mechanical Engineering, 2017, 9, 168781401769762.	1.6	4
51	Combined effects of wrinkled vein structures and nanomechanical properties on hind wing deformation. Micron, 2021, 140, 102965.	2.2	4
52	A Physics-informed Transfer Learning Approach for Anomaly Detection of Aerospace CMG with Limited Telemetry Data., 2021,,.		4
53	The fluid control mechanism of bionic structural heterogeneous composite materials and its potential application in enhancing pump efficiency. Advances in Mechanical Engineering, 2015, 7, 168781401561955.	1.6	3
54	Study on Preparation Technology of Self-healing Micro-nano Capsule based on Calcium Alginate. , 2018, , .		2

#	Article	IF	CITATIONS
55	Biofouling: Bioâ€Inspired Nonâ€Bactericidal Coating Used for Antibiofouling (Adv. Mater. Technol. 2/2019). Advanced Materials Technologies, 2019, 4, 1970014.	5.8	2
56	Investigation of the selective color-changing mechanism of Dynastes tityus beetle (Coleoptera:) Tj ETQq0 0 0 rg	BT <u>{</u> Qverlo	ck 10 Tf 50 70
57	A Microthermal Sensor for Cryoablation Balloons. Journal of Biomechanical Engineering, 2020, 142, .	1.3	1
58	TO@CA Nanocapsule Anti-corrision Coating: Selfhealing and Mechanical Properties., 2019,,.		0