## Vladimir Svrcek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7407461/publications.pdf Version: 2024-02-01



VIADIMID SUDCER

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available<br>materials. Solar Energy Materials and Solar Cells, 2007, 91, 238-249.                               | 6.2  | 527       |
| 2  | Plasma–Liquid Interactions at Atmospheric Pressure for Nanomaterials Synthesis and Surface<br>Engineering. Plasma Processes and Polymers, 2012, 9, 1074-1085.                                         | 3.0  | 227       |
| 3  | Silicon nanocrystals as light converter for solar cells. Thin Solid Films, 2004, 451-452, 384-388.                                                                                                    | 1.8  | 169       |
| 4  | Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water. Applied Physics<br>Letters, 2006, 89, 213113.                                                                    | 3.3  | 125       |
| 5  | Self-organized nanostructures on atmospheric microplasma exposed surfaces. Applied Physics Letters, 2007, 91, 183111.                                                                                 | 3.3  | 91        |
| 6  | Understanding surface chemistry during MAPbl <sub>3</sub> spray deposition and its effect on photovoltaic performance. Journal of Materials Chemistry C, 2017, 5, 902-916.                            | 5.5  | 89        |
| 7  | Environmentally friendly nitrogen-doped carbon quantum dots for next generation solar cells.<br>Sustainable Energy and Fuels, 2017, 1, 1611-1619.                                                     | 4.9  | 81        |
| 8  | Optical gain in porous silicon grains embedded in sol-gel derived SiO2 matrix under femtosecond excitation. Applied Physics Letters, 2004, 84, 3280-3282.                                             | 3.3  | 76        |
| 9  | Ex situprepared Si nanocrystals embedded in silica glass: Formation and characterization. Journal of Applied Physics, 2004, 95, 3158-3163.                                                            | 2.5  | 76        |
| 10 | Silicon Nanocrystals in Liquid Media: Optical Properties and Surface Stabilization by<br>Microplasmaâ€Induced Nonâ€Equilibrium Liquid Chemistry. Advanced Functional Materials, 2012, 22,<br>954-964. | 14.9 | 72        |
| 11 | Ambient-stable blue luminescent silicon nanocrystals prepared by nanosecond-pulsed laser ablation in water. Optics Express, 2009, 17, 520.                                                            | 3.4  | 71        |
| 12 | The importance of surface states in N-doped carbon quantum dots. Carbon, 2021, 183, 1-11.                                                                                                             | 10.3 | 71        |
| 13 | Photovoltaic Applications of Silicon Nanocrystal Based Nanostructures Induced by Nanosecond Laser<br>Fragmentation in Liquid Media. Journal of Physical Chemistry C, 2011, 115, 5084-5093.            | 3.1  | 67        |
| 14 | Surface-engineered silicon nanocrystals. Nanoscale, 2013, 5, 1385.                                                                                                                                    | 5.6  | 67        |
| 15 | Basic features of transport in microcrystalline silicon. Solar Energy Materials and Solar Cells, 2003, 78, 493-512.                                                                                   | 6.2  | 63        |
| 16 | Microplasma-induced surface engineering of silicon nanocrystals in colloidal dispersion. Applied<br>Physics Letters, 2010, 97, .                                                                      | 3.3  | 63        |
| 17 | Lowâ€Temperature Atmospheric Pressure Plasma Processes for "Green―Third Generation Photovoltaics.<br>Plasma Processes and Polymers, 2016, 13, 70-90.                                                  | 3.0  | 62        |
| 18 | Charge carrier localised in zero-dimensional (CH3NH3)3Bi2I9 clusters. Nature Communications, 2017, 8, 170.                                                                                            | 12.8 | 62        |

| #  | Article                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Ultraâ€small CuO nanoparticles with tailored energyâ€band diagram synthesized by a hybrid plasmaâ€liquid<br>process. Plasma Processes and Polymers, 2017, 14, 1600224.                 | 3.0  | 55        |
| 20 | Silicon-based quantum dots: synthesis, surface and composition tuning with atmospheric pressure plasmas. Journal Physics D: Applied Physics, 2015, 48, 314002.                         | 2.8  | 54        |
| 21 | Self-organized carbon connections between catalyst particles on a silicon surface exposed to atmospheric-pressure Ar+CH4 microplasmas. Carbon, 2009, 47, 2379-2390.                    | 10.3 | 46        |
| 22 | Synthesis and surface engineering of nanomaterials by atmospheric-pressure microplasmas. EPJ Applied Physics, 2011, 56, 24020.                                                         | 0.7  | 42        |
| 23 | Model of transport in microcrystalline silicon. Journal of Non-Crystalline Solids, 2002, 299-302, 355-359.                                                                             | 3.1  | 41        |
| 24 | Ultra-small photoluminescent silicon-carbide nanocrystals by atmospheric-pressure plasmas.<br>Nanoscale, 2016, 8, 17141-17149.                                                         | 5.6  | 41        |
| 25 | A hybrid heterojunction based on fullerenes and surfactant-free, self-assembled, closely packed silicon nanocrystals. Journal Physics D: Applied Physics, 2010, 43, 415402.            | 2.8  | 40        |
| 26 | A silicon nanocrystal/polymer nanocomposite as a down-conversion layer in organic and hybrid solar cells. Nanoscale, 2015, 7, 11566-11574.                                             | 5.6  | 37        |
| 27 | Fabrication of multi-level carbon nanotube arrays with adjustable patterns. Nanoscale, 2012, 4,<br>278-283.                                                                            | 5.6  | 36        |
| 28 | Silicon thin film solar cells deposited under 80°C. Thin Solid Films, 2001, 383, 129-131.                                                                                              | 1.8  | 35        |
| 29 | Improved Optoelectronic Properties of Silicon Nanocrystals/Polymer Nanocomposites by<br>Microplasma-Induced Liquid Chemistry. Journal of Physical Chemistry C, 2013, 117, 23198-23207. | 3.1  | 35        |
| 30 | Photoluminescence properties of sol–gel derived SiO2 layers doped with porous silicon. Materials<br>Science and Engineering C, 2002, 19, 233-236.                                      | 7.3  | 33        |
| 31 | Silicon Nanocrystals and Semiconducting Single-Walled Carbon Nanotubes Applied to Photovoltaic<br>Cells. Journal of Physical Chemistry Letters, 2011, 2, 1646-1650.                    | 4.6  | 32        |
| 32 | Transport anisotropy in microcrystalline silicon studied by measurement of ambipolar diffusion length. Journal of Applied Physics, 2001, 89, 1800.                                     | 2.5  | 31        |
| 33 | Unaggregated silicon nanocrystals obtained by ball milling. Journal of Crystal Growth, 2005, 275, 589-597.                                                                             | 1.5  | 30        |
| 34 | Photosensitive self-assembled nanoarchitectures containing surfactant-free Si nanocrystals produced by laser fragmentation in water. Chemical Physics Letters, 2009, 478, 224-229.     | 2.6  | 29        |
| 35 | Constructing honeycomb micropatterns on nonplanar substrates with high glass transition temperature polymers. Journal of Colloid and Interface Science, 2012, 380, 99-104.             | 9.4  | 27        |
| 36 | Top-down prepared silicon nanocrystals and a conjugated polymer-based bulk heterojunction:<br>Optoelectronic and photovoltaic applications. Acta Materialia, 2009, 57, 5986-5995.      | 7.9  | 26        |

| #  | Article                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Dramatic Enhancement of Photoluminescence Quantum Yields for Surfaceâ€Engineered Si Nanocrystals<br>within the Solar Spectrum. Advanced Functional Materials, 2013, 23, 6051-6058.              | 14.9 | 26        |
| 38 | Aging effect on blue luminescent silicon nanocrystals prepared byÂpulsed laser ablation of silicon wafer in de-ionized water. Applied Physics B: Lasers and Optics, 2009, 94, 133-139.          | 2.2  | 25        |
| 39 | Zero-dimensional methylammonium iodo bismuthate solar cells and synergistic interactions with silicon nanocrystals. Nanoscale, 2017, 9, 18759-18771.                                            | 5.6  | 25        |
| 40 | Microplasmaâ€ <scp>I</scp> nduce Liquid Chemistry for Stabilizing of Silicon Nanocrystals Optical<br>Properties in Water. Plasma Processes and Polymers, 2014, 11, 158-163.                     | 3.0  | 24        |
| 41 | Environmentally Friendly Processing Technology for Engineering Silicon Nanocrystals in Water with<br>Laser Pulses. Journal of Physical Chemistry C, 2016, 120, 18822-18830.                     | 3.1  | 23        |
| 42 | Size-dependent stability of ultra-small α-/β-phase tin nanocrystals synthesized by microplasma. Nature<br>Communications, 2019, 10, 817.                                                        | 12.8 | 23        |
| 43 | Improved transport and photostability of poly(methoxy-ethylexyloxy-phenylenevinilene) polymer thin films by boron doped freestanding silicon nanocrystals. Applied Physics Letters, 2008, 92, . | 3.3  | 22        |
| 44 | Type-I alignment in MAPbI3 based solar devices with doped-silicon nanocrystals. Nano Energy, 2018, 50, 245-255.                                                                                 | 16.0 | 22        |
| 45 | Silicon nanocrystals formed by pulsed laser-induced fragmentation of electrochemically etched Si micrograins. Chemical Physics Letters, 2006, 429, 483-487.                                     | 2.6  | 21        |
| 46 | Energy band diagram of device-grade silicon nanocrystals. Nanoscale, 2016, 8, 6623-6628.                                                                                                        | 5.6  | 21        |
| 47 | Charge transport in microcrystalline Si – the specific features. Solar Energy Materials and Solar Cells, 2001, 66, 61-71.                                                                       | 6.2  | 20        |
| 48 | The Interplay of Quantum Confinement and Hydrogenation in Amorphous Silicon Quantum Dots.<br>Advanced Materials, 2015, 27, 8011-8016.                                                           | 21.0 | 20        |
| 49 | Temperature-dependent photoluminescence of surface-engineered silicon nanocrystals. Scientific Reports, 2016, 6, 27727.                                                                         | 3.3  | 20        |
| 50 | Aggregation of Silicon Nanocrystals Prepared by Laser Ablation in Deionized Water. Journal of Laser<br>Micro Nanoengineering, 2007, 2, 15-20.                                                   | 0.1  | 20        |
| 51 | Semiconducting quantum confined silicon–tin alloyed nanocrystals prepared by ns pulsed laser<br>ablation in water. Nanoscale, 2013, 5, 6725.                                                    | 5.6  | 19        |
| 52 | Nanostructured Perovskite Solar Cells. Nanomaterials, 2019, 9, 1481.                                                                                                                            | 4.1  | 19        |
| 53 | Microcrystalline Silicon - Relation between Transport and Microstructure. Solid State Phenomena, 2001, 80-81, 213-224.                                                                          | 0.3  | 18        |
| 54 | Amorphous/microcrystalline silicon superlattices—the chance to control isotropy and other transport properties. Applied Physics Letters, 2001, 79, 2540-2542.                                   | 3.3  | 18        |

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Blue luminescent silicon nanocrystals prepared by short pulsed laser ablation in liquid media. Applied<br>Surface Science, 2009, 255, 9643-9646.                                                       | 6.1  | 18        |
| 56 | Carbon nanotube growth activated by quantum-confined silicon nanocrystals. Journal Physics D:<br>Applied Physics, 2013, 46, 122001.                                                                    | 2.8  | 18        |
| 57 | Studies of silicon nanocrystals in phosphorus rich SiO2 matrices. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 16, 420-423.                                                            | 2.7  | 17        |
| 58 | Filling of single silicon nanocrystals within multiwalled carbon nanotubes. Applied Physics Letters, 2006, 88, 033112.                                                                                 | 3.3  | 17        |
| 59 | Blue luminescent silicon nanocrystals prepared by nanosecond laser ablation and stabilized in electronically compatible spin on glasses. Journal of Applied Physics, 2008, 103, 023101.                | 2.5  | 17        |
| 60 | Photoelectric Properties of Silicon Nanocrystals/P3HT Bulk-Heterojunction Ordered in Titanium<br>Dioxide Nanotube Arrays. Nanoscale Research Letters, 2009, 4, 1389-94.                                | 5.7  | 17        |
| 61 | Synthesis of nanocrystals by discharges in liquid nitrogen from Si–Sn sintered electrode. Scientific<br>Reports, 2015, 5, 17477.                                                                       | 3.3  | 16        |
| 62 | Varying Surface Chemistries for p-Doped and n-Doped Silicon Nanocrystals and Impact on Photovoltaic Devices. ACS Applied Materials & Interfaces, 2015, 7, 28207-28214.                                 | 8.0  | 16        |
| 63 | Ordered titanium dioxide nanotubes filled with photoluminescent surfactant-free silicon nanocrystals. Nanotechnology, 2010, 21, 215203.                                                                | 2.6  | 15        |
| 64 | Bandgap Engineering in OHâ€Functionalized Silicon Nanocrystals: Interplay between Surface<br>Functionalization and Quantum Confinement. Advanced Functional Materials, 2017, 27, 1701898.              | 14.9 | 15        |
| 65 | Semiconducting silicon-tin alloy nanocrystals with direct bandgap behavior for photovoltaic devices. Materials Today Energy, 2018, 7, 87-97.                                                           | 4.7  | 15        |
| 66 | Microplasma-synthesized ultra-small NiO nanocrystals, a ubiquitous hole transport material.<br>Nanoscale Advances, 2019, 1, 4915-4925.                                                                 | 4.6  | 15        |
| 67 | Filling and capping multiwall carbon nanotubes with silicon nanocrystals dispersed in SiO2-based spin on glass. Journal of Applied Physics, 2006, 99, 064306.                                          | 2.5  | 14        |
| 68 | Enhancement of hybrid solar cell performance by polythieno [3,4-b]thiophenebenzodithiophene and microplasma-induced surface engineering of silicon nanocrystals. Applied Physics Letters, 2012, 100, . | 3.3  | 14        |
| 69 | Luminescent properties of doped freestanding silicon nanocrystals embedded in MEH-PPV. Solar<br>Energy Materials and Solar Cells, 2009, 93, 774-778.                                                   | 6.2  | 13        |
| 70 | Tailoring of hybrid silicon nanocrystal-based bulk heterojunction photovoltaic properties upon<br>nanocrystal laser processing in liquid medium. Acta Materialia, 2011, 59, 764-773.                   | 7.9  | 13        |
| 71 | Photoluminescence studies from silicon nanocrystals embedded in spin on glass thin films. Journal of Luminescence, 2003, 101, 269-274.                                                                 | 3.1  | 12        |
| 72 | Oxidation and reduction of nanodiamond particles in colloidal solutions by laser irradiation or radio-frequency plasma treatment. Vibrational Spectroscopy, 2016, 83, 108-114.                         | 2.2  | 12        |

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Clustering/declustering of silicon nanocrystals in spin-on glass solutions. Semiconductor Science and Technology, 2005, 20, 314-319.                                                                                                           | 2.0 | 11        |
| 74 | Stable ultrathin surfactantâ€free surfaceâ€engineered silicon nanocrystal solar cells deposited at room temperature. Energy Science and Engineering, 2017, 5, 184-193.                                                                         | 4.0 | 11        |
| 75 | Controlling the Energy-Level Alignment of Silicon Carbide Nanocrystals by Combining Surface<br>Chemistry with Quantum Confinement. Journal of Physical Chemistry Letters, 2020, 11, 1721-1728.                                                 | 4.6 | 11        |
| 76 | Importance of the transport isotropy in μc-Si:H thin films for solar cells deposited at low substrate temperatures. Journal of Non-Crystalline Solids, 2002, 299-302, 395-399.                                                                 | 3.1 | 9         |
| 77 | Monitoring the chemical vapor deposition growth of multiwalled carbon nanotubes by tapered element oscillating microbalance. Journal of Chemical Physics, 2006, 124, 184705.                                                                   | 3.0 | 9         |
| 78 | Fabrication of Filled Carbon Nanotubes with Fresh Silicon Nanocrystals Produced In Situ by<br>Nanosecond Pulsed Laser Processing in Environmentally Friendly Solutions. Journal of Physical<br>Chemistry C, 2008, 112, 13181-13186.            | 3.1 | 9         |
| 79 | Formation of Single-Crystal Spherical Particle Architectures by Plasma-Induced Low-Temperature<br>Coalescence of Silicon Nanocrystals Synthesized by Laser Ablation in Water. Journal of Physical<br>Chemistry C, 2011, 115, 6235-6242.        | 3.1 | 9         |
| 80 | Built-In Charges and Photoluminescence Stability of 3D Surface-Engineered Silicon Nanocrystals by a<br>Nanosecond Laser and a Direct Current Microplasma. Journal of Physical Chemistry C, 2013, 117,<br>10939-10948.                          | 3.1 | 9         |
| 81 | Photoluminescence of a superficial Si nanolayer and an example of its use. Applied Physics Letters, 2003, 82, 4056-4058.                                                                                                                       | 3.3 | 8         |
| 82 | Nanocrystalline silicon and carbon nanotube nanocomposites prepared by pulsed laser fragmentation. Pure and Applied Chemistry, 2008, 80, 2513-2520.                                                                                            | 1.9 | 8         |
| 83 | Microscopic Electrical Conductivity of Nanodiamonds after Thermal and Plasma Treatments. MRS<br>Advances, 2016, 1, 1105-1111.                                                                                                                  | 0.9 | 8         |
| 84 | Significant Carrier Extraction Enhancement at the Interface of an InN/p-GaN Heterojunction under<br>Reverse Bias Voltage. Nanomaterials, 2018, 8, 1039.                                                                                        | 4.1 | 6         |
| 85 | <i>In Situ</i> Grown Nanocrystalline Si Recombination Junction Layers for Efficient Perovskite–Si<br>Monolithic Tandem Solar Cells: Toward a Simpler Multijunction Architecture. ACS Applied Materials<br>& Interfaces, 2022, 14, 33505-33514. | 8.0 | 6         |
| 86 | A new approach to surface photovoltage measurements on hydrogenated microcrystalline silicon<br>layers. Philosophical Magazine Letters, 2001, 81, 405-410.                                                                                     | 1.2 | 5         |
| 87 | Surface photovoltage measurements in μc-Si:H: Manifestation of the bottom space charge region.<br>Journal of Applied Physics, 2002, 92, 2323-2329.                                                                                             | 2.5 | 5         |
| 88 | Encapsulation of fresh silicon nanocrystals in carbon nanotube cavity. Materials Letters, 2008, 62,<br>2578-2580.                                                                                                                              | 2.6 | 5         |
| 89 | In Situ Monitoring the Thermal Dependence of the Growth of Carbon Nanotubes by Chemical Vapor<br>Deposition Investigated by Tapered Element Oscillating Microbalance. Journal of Physical Chemistry C,<br>2009, 113, 14879-14892.              | 3.1 | 5         |
| 90 | Excitation energy transfer in conjugated polymer/silicon nanocrystal-based bulk heterojunctions.<br>Pure and Applied Chemistry, 2010, 82, 2121-2135.                                                                                           | 1.9 | 5         |

| #   | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Tuning the Bandgap Character of Quantumâ€Confined Si–Sn Alloyed Nanocrystals. Advanced Functional<br>Materials, 2020, 30, 1907210.                                                                         | 14.9 | 5         |
| 92  | Detection of bottom depletion layer and its influence on surface photovoltage measurement in μc-Si:H.<br>Thin Solid Films, 2001, 383, 271-273.                                                             | 1.8  | 4         |
| 93  | Connection of silicon nanocrystals (Si-nc) with multi-walled carbon nanotubes. Applied Physics A:<br>Materials Science and Processing, 2006, 83, 153-157.                                                  | 2.3  | 4         |
| 94  | Colloidal silicon nanocrystallites for low-cost solar cell development. Nano-Micro Letters, 2009, 1, 40-44.                                                                                                | 27.0 | 4         |
| 95  | Blue Light Emitting Silicon Nanocrystals Prepared by Laser Ablation of Doped Si Wafers in Water.<br>Journal of Laser Micro Nanoengineering, 2010, 5, 103-108.                                              | 0.1  | 4         |
| 96  | Electronic interactions of silicon nanocrystals and nanocarbon materials: Hybrid solar cells. Pure and Applied Chemistry, 2012, 84, 2629-2639.                                                             | 1.9  | 3         |
| 97  | Integration of Surfactant-Free Silicon Nanocrystal in Hybrid Solar Cells. Japanese Journal of Applied<br>Physics, 2012, 51, 10NE25.                                                                        | 1.5  | 3         |
| 98  | Impact of Silicon Nanocrystal Oxidation on the Nonmetallic Growth of Carbon Nanotubes. ACS<br>Applied Materials & Interfaces, 2016, 8, 19012-19023.                                                        | 8.0  | 3         |
| 99  | (Invited) Microplasmas Technologies for Engineering of Silicon Based Quantum Dot Solar Cells. ECS<br>Transactions, 2017, 77, 1-8.                                                                          | 0.5  | 3         |
| 100 | Bridging energy bands to the crystalline and amorphous states of Si QDs. Faraday Discussions, 2020, 222, 390-404.                                                                                          | 3.2  | 3         |
| 101 | Oscillating Antiferromagnetism of Ultrathin EuTe Layers. Acta Physica Polonica A, 1997, 92, 1051-1054.                                                                                                     | 0.5  | 3         |
| 102 | Luminescent Colloidal Silicon Nanocrystals Prepared by Nanoseconds Laser Fragmentation and Laser<br>Ablation in Water. Materials Research Society Symposia Proceedings, 2008, 1066, 1.                     | 0.1  | 2         |
| 103 | Hybrid Optoelectronic and Photovoltaic Materials based on Silicon Nanocrystals and Conjugated Polymers. , 2011, , .                                                                                        |      | 2         |
| 104 | Performance and stability gain in zero-dimensional perovskite solar cells after >2 years when hybridized with silicon nanocrystals. Nanoscale Advances, 2019, 1, 4683-4687.                                | 4.6  | 2         |
| 105 | Computer-based methods for measurement, recording and modeling vessel responses in vitro: A pilot study with noradrenaline. Methods and Findings in Experimental and Clinical Pharmacology, 2003, 25, 441. | 0.8  | 2         |
| 106 | Silicon Nanocrystals Surface Engineering by Nanosecond Laser Processing in Water. The Review of<br>Laser Engineering, 2012, 40, 128.                                                                       | 0.0  | 2         |
| 107 | Integration of Surfactant-Free Silicon Nanocrystal in Hybrid Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 10NE25.                                                                           | 1.5  | 2         |
| 108 | Colloidal blue and red luminescent silicon nanocrystals and their elaboration in pure and doped spin on glasses. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 40, 293-296.                 | 2.7  | 1         |

| #   | Article                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Phosphorous and Boron Doped Colloidal Silicon Nanocrystals in Conjugated Co-polymers. Materials<br>Research Society Symposia Proceedings, 2008, 1102, 1.                    | 0.1 | 1         |
| 110 | Bulk-heterojunction Based on Blending of Red and Blue Luminescent Silicon Nanocrystals and P3HT<br>Polymer. Materials Research Society Symposia Proceedings, 2009, 1153, 1. | 0.1 | 1         |
| 111 | Three-Dimensional Femtosecond Laser Fabrication. ECS Transactions, 2009, 16, 57-63.                                                                                         | 0.5 | 1         |
| 112 | Carriers multiplication in neighboring surfactant-free silicon nanocrystals produced by 3D-surface engineering in liquid medium , 2012, , .                                 |     | 1         |
| 113 | Enhancement of polymer solar cell performance under low-concentrated sunlight by 3D surface-engineered silicon nanocrystals. , 2013, , .                                    |     | 1         |
| 114 | Silicon Nanocrystal/Nanocarbon Hybrids. , 2016, , 543-561.                                                                                                                  |     | 1         |
| 115 | Carrier extraction from metallic perovskite oxide nanoparticles. Nanoscale, 2021, 13, 12271-12278.                                                                          | 5.6 | 1         |
| 116 | (Invited) Electronic and Optical Properties of Quantum-Confined Nanoparticles. ECS Transactions, 2021, 102, 67-73.                                                          | 0.5 | 1         |
| 117 | Thin silicon films deposited at low substrate temperatures studied by surface photovoltage technique. Thin Solid Films, 2004, 451-452, 408-412.                             | 1.8 | 0         |
| 118 | Fuctionalization of single silicon nanocrystals by connecting with multiwalled carbon nanotubes.<br>AIP Conference Proceedings, 2005, , .                                   | 0.4 | 0         |
| 119 | Wiring and introduction of single silicon nanocrystals into multi-walled carbon nanotubes.<br>Materials Research Society Symposia Proceedings, 2005, 862, 451.              | 0.1 | 0         |
| 120 | Transport and stability of doped freestanding silicon nanocrystals and MEH-PPV blends. Conference<br>Record of the IEEE Photovoltaic Specialists Conference, 2008, , .      | 0.0 | 0         |
| 121 | Bulk-heterojunction performance influenced by polymer structure and silicon nanocrystals micrograins doping. , 2009, , .                                                    |     | 0         |
| 122 | Filtering and Assembly of Si Nanocrystals/Conjugated Polymer Blend with Reduced Oxygen<br>Penetration. Journal of the Electrochemical Society, 2010, 157, K194.             | 2.9 | 0         |
| 123 | Enhanced photovoltaic effect of nanosecond-laser produced silicon nanocrystals embedded into<br>TiO <inf>2</inf> nanotubes. , 2010, , .                                     |     | 0         |
| 124 | Silicon nanocrystal surface engineering and their electronic interaction with carbon based materials. , 2011, , .                                                           |     | 0         |
| 125 | Surface-engineered silicon nanocrystals as high energy photons downshifters for organic and hybrid solar cells. , 2014, , .                                                 |     | 0         |
| 126 | Zero-dimensional perovskite-like (CH <inf>3</inf> NH <inf>3</inf> ) <inf>3</inf> Bi <inf>2</inf><br>I <inf>9</inf> thin films for photovoltaics. , 2018, , .                |     | 0         |

| #   | Article                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Silicon-Tin Alloyed Nanocrystals by Femtosecond Laser Plasma. ECS Transactions, 2021, 102, 19-23.                                                        | 0.5  | 0         |
| 128 | Room temperature photoluminescence of the freestanding silicon nanocrystals. Transactions of the Materials Research Society of Japan, 2008, 33, 659-663. | 0.2  | 0         |
| 129 | Functionalization of Carbon Nanotubes with Luminescent Silicon Nanocrystals upon Nanosecond<br>Laser Processing in Liquid Media. , 0, , .                |      | Ο         |
| 130 | Colloidal Silicon Nanocrystallites for Low-cost Solar Cell Development. Nano-Micro Letters, 2010, 1, .                                                   | 27.0 | 0         |