
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7407449/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	What makes epoxy-phenolic coatings on metals ubiquitous: Surface energetics and molecular adhesion characteristics. Journal of Colloid and Interface Science, 2022, 608, 634-643.	9.4	18
2	A Critical Review of the Performance and Soil Biodegradability Profiles of Biobased Natural and Chemically Synthesized Polymers in Industrial Applications. Environmental Science & Technology, 2022, 56, 2071-2095.	10.0	33
3	Controlled adhesion, membrane pinning and vesicle transport by Janus particles. Chemical Communications, 2022, 58, 3055-3058.	4.1	6
4	AC electrohydrodynamic propulsion and rotation of active particles of engineered shape and asymmetry. Current Opinion in Colloid and Interface Science, 2022, 59, 101586.	7.4	14
5	Efficacy and Mechanisms of Copper Ion-Catalyzed Inactivation of Human Norovirus. ACS Infectious Diseases, 2022, 8, 855-864.	3.8	6
6	Microstructural Defects of Epoxy–Phenolic Polymers on Metal Substrates during Acidic Corrosion. ACS Applied Polymer Materials, 2022, 4, 3196-3204.	4.4	3
7	Structure–Performance Relationships of Li-Ion Battery Fiber-Based Separators. ACS Applied Polymer Materials, 2022, 4, 3676-3686.	4.4	8
8	Silica Supraparticles with Selfâ€Oscillatory Vertical Propulsion: Mechanism & Theoretical Description. Particle and Particle Systems Characterization, 2022, 39, .	2.3	2
9	Wireless Wearable Electrochemical Sensing Platform with Zero-Power Osmotic Sweat Extraction for Continuous Lactate Monitoring. ACS Sensors, 2022, 7, 2037-2048.	7.8	44
10	In Vivo Toxicity Assessment of Chitosan-Coated Lignin Nanoparticles in Embryonic Zebrafish (Danio) Tj ETQq0 0 (D rgBT /Ov	erlock 10 Tf 17
11	Understanding lignin micro- and nanoparticle nucleation and growth in aqueous suspensions by solvent fractionation. Green Chemistry, 2021, 23, 1001-1012.	9.0	47

12	Poly(Vinylidene Difluoride) Soft Dendritic Colloids as Li-Ion Battery Separators. Journal of the Electrochemical Society, 2021, 168, 020517.	2.9	12
13	Wearable Osmotic-Capillary Patch for Prolonged Sweat Harvesting and Sensing. ACS Applied Materials & Interfaces, 2021, 13, 8071-8081.	8.0	39
14	Preparation of Reinforced Anisometric Patchy Supraparticles for Selfâ€Propulsion. Particle and Particle Systems Characterization, 2021, 38, 2000328.	2.3	5
15	Osmotic-Capillary Principles for Microfluidic Pumping and Fluid Management for Sweat Sensing Devices. ECS Meeting Abstracts, 2021, MA2021-01, 1600-1600.	0.0	0
16	Printable homocomposite hydrogels with synergistically reinforced molecular-colloidal networks. Nature Communications, 2021, 12, 2834.	12.8	41
17	Field-Driven Reversible Alignment and Gelation of Magneto-Responsive Soft Anisotropic Microbeads. Journal of Physical Chemistry B, 2021, 125, 7900-7910.	2.6	6
18	Bioscaffold Stiffness Mediates Aerosolized Nanoparticle Uptake in Lung Epithelial Cells. ACS Applied Materials & Interfaces, 2021, 13, 50643-50656.	8.0	11

#	Article	IF	CITATIONS
19	A Wearable Patch for Prolonged Sweat Lactate Harvesting and Sensing. , 2021, 2021, 6863-6866.		4
20	Osmotically Enabled Wearable Patch for Sweat Harvesting and Lactate Quantification. Micromachines, 2021, 12, 1513.	2.9	18
21	Scalable Formation of Concentrated Monodisperse Lignin Nanoparticles by Recirculationâ€Enhanced Flash Nanoprecipitation. Particle and Particle Systems Characterization, 2020, 37, 2000122.	2.3	14
22	Principles of long-term fluids handling in paper-based wearables with capillary–evaporative transport. Biomicrofluidics, 2020, 14, 034112.	2.4	32
23	Multiscale Self-Assembly of Distinctive Weblike Structures from Evaporated Drops of Dilute American Whiskeys. ACS Nano, 2020, 14, 5417-5425.	14.6	22
24	Control of the Folding Dynamics of Selfâ€Reconfiguring Magnetic Microbots Using Liquid Crystallinity. Advanced Intelligent Systems, 2020, 2, 1900114.	6.1	17
25	Active Reversible Swimming of Magnetically Assembled "Microscallops―in Non-Newtonian Fluids. Langmuir, 2020, 36, 7148-7154.	3.5	30
26	Mechanism and control of "coffee-ring erosion―phenomena in structurally colored ionomer films. Soft Matter, 2020, 16, 2683-2694.	2.7	6
27	An Ideal Structure for Li-Ion Battery Separators. ECS Meeting Abstracts, 2020, MA2020-02, 3792-3792.	0.0	0
28	AutoRally: An Open Platform for Aggressive Autonomous Driving. IEEE Control Systems, 2019, 39, 26-55.	0.8	61
29	Magnetic Actuators: 3Dâ€Printed Silicone Soft Architectures with Programmed Magnetoâ€Capillary Reconfiguration (Adv. Mater. Technol. 4/2019). Advanced Materials Technologies, 2019, 4, 1970021.	5.8	1
30	Real-time monitoring and control of CHO cell apoptosis by in situ multifrequency scanning dielectric spectroscopy. Process Biochemistry, 2019, 80, 138-145.	3.7	15
31	Towards Wearable Electrochemical Lactate Sensing using Osmotic-Capillary Microfluidic Pumping. , 2019, , .		10
32	Soft dendritic microparticles with unusual adhesion and structuring properties. Nature Materials, 2019, 18, 1315-1320.	27.5	53
33	Mechanochromic composite elastomers for additive manufacturing and low strain mechanophore activation. Polymer Chemistry, 2019, 10, 5985-5991.	3.9	22
34	3Dâ€Printed Silicone Soft Architectures with Programmed Magnetoâ€Capillary Reconfiguration. Advanced Materials Technologies, 2019, 4, 1800528.	5.8	62
35	Revisiting the colloidal fundamentals of water-dispersible polyesters: interactions and self-assembly of polymer nanoaggregates in water. Soft Matter, 2018, 14, 2118-2130.	2.7	19
36	Stabilization of oil continuous emulsions with colloidal particles from water-insoluble plant proteins. Food Hydrocolloids, 2018, 82, 89-95.	10.7	57

#	Article	IF	CITATIONS
37	Soft electrodes combining hydrogel and liquid metal. Soft Matter, 2018, 14, 3296-3303.	2.7	99
38	Engineering of Selfâ€Propelling Microbots and Microdevices Powered by Magnetic and Electric Fields. Advanced Functional Materials, 2018, 28, 1705953.	14.9	109
39	Reconfigurable engineered motile semiconductor microparticles. Nature Communications, 2018, 9, 1791.	12.8	18
40	Formation of periodic size-segregated stripe pattern via directed self-assembly of binary colloids and its mechanism. Applied Surface Science, 2018, 435, 512-520.	6.1	12
41	Propulsion and assembly of remotely powered p-type silicon microparticles. APL Materials, 2018, 6, 121102.	5.1	2
42	Probing Contaminant-Induced Alterations in Chlorophyll Fluorescence by AC-Dielectrophoresis-Based 2D-Algal Array. Biosensors, 2018, 8, 15.	4.7	4
43	Nanomaterials Fabrication by Interfacial Templating and Capillary Engineering in Multiphasic Liquids. AICHE Journal, 2018, 64, 3558-3564.	3.6	3
44	Toxicological Assessment of a Lignin Core Nanoparticle Doped with Silver as an Alternative to Conventional Silver Core Nanoparticles. Antibiotics, 2018, 7, 40.	3.7	14
45	Supercolloidal Spinners: Complex Active Particles for Electrically Powered and Switchable Rotation. Advanced Functional Materials, 2018, 28, 1803465.	14.9	55
46	Hydrogel-enabled osmotic pumping for microfluidics: towards wearable human-device interfaces. Lab on A Chip, 2017, 17, 710-716.	6.0	50
47	Simulation study on the structural properties of colloidal particles with offset dipoles. Soft Matter, 2017, 13, 3134-3146.	2.7	9
48	Reduction of defects in self-assembling colloidal monolayer via surface modifiers and periodic mechanical vibration. Surface and Coatings Technology, 2017, 319, 353-358.	4.8	9
49	Biocoatings: challenges to expanding the functionality of waterborne latex coatings by incorporating concentrated living microorganisms. Journal of Coatings Technology Research, 2017, 14, 791-808.	2.5	24
50	Fabrication of Photoreactive Biocomposite Coatings via Electric Field-Assisted Assembly of Cyanobacteria. Langmuir, 2017, 33, 5304-5313.	3.5	14
51	3D Printing by Multiphase Silicone/Water Capillary Inks. Advanced Materials, 2017, 29, 1701554.	21.0	140
52	Investigation of interfacial properties of pure and mixed poloxamers for surfactant-mediated shear protection of mammalian cells. Colloids and Surfaces B: Biointerfaces, 2017, 156, 358-365.	5.0	18
53	Design and characterization of hydrogel-based microfluidic devices with biomimetic solute transport networks. Biomicrofluidics, 2017, 11, 024104.	2.4	17
54	Chained Iron Microparticles for Directionally Controlled Actuation of Soft Robots. ACS Applied Materials & amp; Interfaces, 2017, 9, 11895-11901.	8.0	128

#	Article	IF	CITATIONS
55	The Evolution of Active Particles: Toward Externally Powered Self-Propelling and Self-Reconfiguring Particle Systems. CheM, 2017, 3, 539-559.	11.7	62
56	Sequence-encoded colloidal origami and microbot assemblies from patchy magnetic cubes. Science Advances, 2017, 3, e1701108.	10.3	90
57	Controlled Formation of Patchy Anisometric Fumed Silica Supraparticles in Droplets on Bent Superhydrophobic Surfaces. Particle and Particle Systems Characterization, 2017, 34, 1600176.	2.3	14
58	Alternating Current-Dielectrophoresis Collection and Chaining of Phytoplankton on Chip: Comparison of Individual Species and Artificial Communities. Biosensors, 2017, 7, 4.	4.7	11
59	Ionoprinted Multi-Responsive Hydrogel Actuators. Micromachines, 2016, 7, 98.	2.9	46
60	Bending of Responsive Hydrogel Sheets Guided by Fieldâ€Assembled Microparticle Endoskeleton Structures. Small, 2016, 12, 2283-2290.	10.0	62
61	Active Steerable Catalytic Supraparticles Shuttling on Preprogrammed Vertical Trajectories. Advanced Materials Interfaces, 2016, 3, 1600095.	3.7	19
62	Dissolution behaviour of ferric pyrophosphate and its mixtures with soluble pyrophosphates: Potential strategy for increasing iron bioavailability. Food Chemistry, 2016, 208, 97-102.	8.2	14
63	The effect of charge separation on the phase behavior of dipolar colloidal rods. Soft Matter, 2016, 12, 4932-4943.	2.7	9
64	Multidirectional colloidal assembly in concurrent electric and magnetic fields. Soft Matter, 2016, 12, 7747-7758.	2.7	45
65	Capillary Bridging as a Tool for Assembling Discrete Clusters of Patchy Particles. Journal of the American Chemical Society, 2016, 138, 14948-14953.	13.7	53
66	Synthesis and Characterization of Biodegradable Lignin Nanoparticles with Tunable Surface Properties. Langmuir, 2016, 32, 6468-6477.	3.5	220
67	Organic–inorganic patchy particles as a versatile platform for fluid-in-fluid dispersion stabilisation. Faraday Discussions, 2016, 191, 73-88.	3.2	12
68	Selective and directional actuation of elastomer films using chained magnetic nanoparticles. Nanoscale, 2016, 8, 1309-1313.	5.6	68
69	Role of network geometry on fluid displacement in microfluidic color-changing windows. Smart Structures and Systems, 2016, 18, 865-884.	1.9	0
70	Formation of Anisometric Fumed Silica Supraparticles – Mechanism and Application Potential. Zeitschrift Fur Physikalische Chemie, 2015, 229, 1055-1074.	2.8	6
71	Remote Steering of Selfâ€Propelling Microcircuits by Modulated Electric Field. Advanced Functional Materials, 2015, 25, 5512-5519.	14.9	36
72	Two-Dimensional Algal Collection and Assembly by Combining AC-Dielectrophoresis with Fluorescence Detection for Contaminant-Induced Oxidative Stress Sensing. Biosensors, 2015, 5, 319-336.	4.7	19

#	Article	IF	CITATIONS
73	Magnetophoretic assembly of flexible nanoparticles/lipid microfilaments. Faraday Discussions, 2015, 181, 437-448.	3.2	21
74	The dynamics and stability of lubricating oil films during droplet transport by electrowetting in microfluidic devices. Biomicrofluidics, 2015, 9, 034104.	2.4	24
75	Smart Nonaqueous Foams from Lipid-Based Oleogel. Langmuir, 2015, 31, 13501-13510.	3.5	68
76	Assembly of Reconfigurable Colloidal Structures by Multidirectional Field-Induced Interactions. Langmuir, 2015, 31, 7897-7908.	3.5	89
77	Nanocapillarity-mediated magnetic assembly ofÂnanoparticles into ultraflexible filaments andÂreconfigurable networks. Nature Materials, 2015, 14, 1104-1109.	27.5	89
78	Field-assisted self-assembly process: general discussion. Faraday Discussions, 2015, 181, 463-479.	3.2	1
79	New routes to control nanoparticle synthesis: general discussion. Faraday Discussions, 2015, 181, 147-179.	3.2	2
80	An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core. Nature Nanotechnology, 2015, 10, 817-823.	31.5	493
81	Scalable Liquid Shearâ€Driven Fabrication of Polymer Nanofibers. Advanced Materials, 2015, 27, 2642-2647.	21.0	45
82	Artificial leaf device for hydrogen generation from immobilised C. reinhardtii microalgae. Journal of Materials Chemistry A, 2015, 3, 20698-20707.	10.3	33
83	Characterization and control of surfactant-mediated Norovirus interactions. Soft Matter, 2015, 11, 8621-8631.	2.7	27
84	Generic model for tunable colloidal aggregation in multidirectional fields. Soft Matter, 2015, 11, 7356-7366.	2.7	12
85	Multidirectional, Multicomponent Electric Field Driven Assembly of Complex Colloidal Chains. Zeitschrift Fur Physikalische Chemie, 2015, 229, 1075-1088.	2.8	9
86	On-chip microelectrode impedance analysis of mammalian cell viability during biomanufacturing. Biomicrofluidics, 2014, 8, 054108.	2.4	8
87	Electro-actuated hydrogel walkers with dual responsive legs. Soft Matter, 2014, 10, 1337-1348.	2.7	301
88	Pickering stabilization of foams and emulsions with particles of biological origin. Current Opinion in Colloid and Interface Science, 2014, 19, 490-500.	7.4	385
89	Analysis of the Field-Assisted Permanent Assembly of Oppositely Charged Particles. Langmuir, 2014, 30, 6577-6587.	3.5	19
90	Controlling the Shape of Evaporating Droplets by Ionic Strength: Formation of Highly Anisometric Silica Supraparticles. Angewandte Chemie - International Edition, 2014, 53, 586-590.	13.8	49

#	Article	IF	CITATIONS
91	Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting. Nature Communications, 2013, 4, 2257.	12.8	380
92	Stability and Viscoelasticity of Magneto-Pickering Foams. Langmuir, 2013, 29, 10019-10027.	3.5	65
93	Ionic current devices—Recent progress in the merging of electronic, microfluidic, and biomimetic structures. Biomicrofluidics, 2013, 7, 31501.	2.4	35
94	Regenerable Photovoltaic Devices with a Hydrogel-Embedded Microvascular Network. Scientific Reports, 2013, 3, 2357.	3.3	28
95	Field-directed assembly of patchy anisotropic microparticles with defined shape. Soft Matter, 2013, 9, 9219.	2.7	66
96	Curvature makes a difference. Nature Nanotechnology, 2013, 8, 620-621.	31.5	6
97	Multi-stimuli responsive foams combining particles and self-assembling fatty acids. Chemical Science, 2013, 4, 3874.	7.4	77
98	Biomimetic photocatalytic reactor with a hydrogel-embedded microfluidic network. Journal of Materials Chemistry A, 2013, 1, 11106.	10.3	22
99	Two-dimensional colloidal networks induced by a uni-axial external field. Soft Matter, 2013, 9, 2518.	2.7	27
100	Alternating current-dielectrophoresis driven on-chip collection and chaining of green microalgae in freshwaters. Biomicrofluidics, 2013, 7, 24109.	2.4	26
101	Engineering Cellular Photocomposite Materials Using Convective Assembly. Materials, 2013, 6, 1803-1825.	2.9	13
102	Continuous Convective-Sedimentation Assembly of Colloidal Microsphere Coatings for Biotechnology Applications. Coatings, 2013, 3, 26-48.	2.6	15
103	Co-Assembly of Oppositely Charged Particles into Linear Clusters and Chains of Controllable Length. Scientific Reports, 2012, 2, 1004.	3.3	41
104	MATERIALS DEPOSITION IN EVAPORATING MENISCI — FUNDAMENTALS AND ENGINEERING APPLICATIONS OF THE CONVECTIVE ASSEMBLY PROCESS. , 2012, , 109-155.		5
105	Fabrication of Environmentally Biodegradable Lignin Nanoparticles. ChemPhysChem, 2012, 13, 4235-4243.	2.1	326
106	On-chip latex agglutination immunoassay readout by electrochemical impedance spectroscopy. Lab on A Chip, 2012, 12, 4279.	6.0	20
107	Microfluidic elastomer composites with switchable vis-IR transmittance. Soft Matter, 2012, 8, 11232.	2.7	13
108	Electric-Field-Controlled Flow in Nanoscale-Thin Wetting Films. Langmuir, 2012, 28, 3037-3044.	3.5	1

#	Article	IF	CITATIONS
109	Gel-Based Self-Propelling Particles Get Programmed To Dance. Langmuir, 2012, 28, 10128-10135.	3.5	72
110	Droplet Microreactors for Materials Synthesis. , 2012, , 179-209.		0
111	Chapter 8. Self-assembly of Janus Particles Under External Fields. RSC Smart Materials, 2012, , 168-203.	0.1	1
112	Phase diagram of two-dimensional systems of dipole-like colloids. Soft Matter, 2012, 8, 1521-1531.	2.7	47
113	Deposition of composite coatings from particle–particle and particle–yeast blends by convective-sedimentation assembly. Journal of Colloid and Interface Science, 2012, 380, 192-200.	9.4	11
114	Ionic Current Rectification in Softâ€Matter Diodes with Liquidâ€Metal Electrodes. Advanced Functional Materials, 2012, 22, 625-631.	14.9	113
115	Aqueous soft matter based photovoltaic devices. Journal of Materials Chemistry, 2011, 21, 72-79.	6.7	46
116	Magnetically Responsive Pickering Foams. Journal of the American Chemical Society, 2011, 133, 13856-13859.	13.7	116
117	Ultrathin film coatings of aligned cellulose nanocrystals from a convective-shear assembly system and their surface mechanical properties. Soft Matter, 2011, 7, 1957.	2.7	148
118	Convective Assembly of 2D Lattices of Virusâ€like Particles Visualized by Inâ€Situ Grazingâ€Incidence Smallâ€Angle Xâ€Ray Scattering. Small, 2011, 7, 1043-1050.	10.0	15
119	Towards Allâ€Soft Matter Circuits: Prototypes of Quasiâ€Liquid Devices with Memristor Characteristics. Advanced Materials, 2011, 23, 3559-3564.	21.0	189
120	On-chip collection of particles and cells by AC electroosmotic pumping and dielectrophoresis using asymmetric microelectrodes. Biomicrofluidics, 2011, 5, 34113-3411317.	2.4	45
121	Anisotropic Particle Synthesis Inside Droplet Templates on Superhydrophobic Surfaces. Macromolecular Rapid Communications, 2010, 31, 190-195.	3.9	47
122	Macromol. Rapid Commun. 2/2010. Macromolecular Rapid Communications, 2010, 31, .	3.9	26
123	Ion urrent Diode with Aqueous Gel/SiO ₂ Nanofilm Interfaces. Small, 2010, 6, 1393-1397.	10.0	32
124	Directed assembly of yeast cells into living yeastosomes by microbubble templating. Soft Matter, 2010, 6, 3494.	2.7	45
125	On-Chip Dielectrophoretic Coassembly of Live Cells and Particles into Responsive Biomaterials. Langmuir, 2010, 26, 3441-3452.	3.5	43
126	Electric-Field-Assisted Convective Assembly of Colloidal Crystal Coatings. Langmuir, 2010, 26, 10380-10385.	3.5	37

#	Article	IF	CITATIONS
127	Programmed assembly of metallodielectric patchy particles in external AC electric fields. Soft Matter, 2010, 6, 1413.	2.7	124
128	Live celloidosome structures based on the assembly of individual cells by colloid interactions. Physical Chemistry Chemical Physics, 2010, 12, 11912.	2.8	27
129	Self-assembly in binary mixtures of dipolar colloids: Molecular dynamics simulations. Journal of Chemical Physics, 2010, 133, 064511.	3.0	37
130	Microfluidic characterization of sustained solute release from porous supraparticles. Physical Chemistry Chemical Physics, 2010, 12, 11975.	2.8	15
131	Bicontinuous gels formed by self-assembly of dipolar colloid particles. Soft Matter, 2010, 6, 480-484.	2.7	33
132	Materials Fabricated by Micro―and Nanoparticle Assembly – The Challenging Path from Science to Engineering. Advanced Materials, 2009, 21, 1897-1905.	21.0	374
133	Materials of Controlled Shape and Stiffness with Photocurable Microfluidic Endoskeleton. Advanced Materials, 2009, 21, 2803-2807.	21.0	24
134	Microfluidic Endoskeletons: Materials of Controlled Shape and Stiffness with Photocurable Microfluidic Endoskeleton (Adv. Mater. 27/2009). Advanced Materials, 2009, 21, n/a-n/a.	21.0	0
135	Reconfigurable responsive structures assembled from magnetic Janus particles. Soft Matter, 2009, 5, 1285.	2.7	217
136	Deposition of Coatings from Live Yeast Cells and Large Particles by "Convective-Sedimentation― Assembly. Langmuir, 2009, 25, 5692-5702.	3.5	13
137	Particle-localized AC and DC manipulation and electrokinetics. Annual Reports on the Progress of Chemistry Section C, 2009, 105, 213.	4.4	114
138	Intense and selective coloration of foams stabilized with functionalized particles. Journal of Materials Chemistry, 2009, 19, 7043.	6.7	23
139	Synthesis of Lightâ€Diffracting Assemblies from Microspheres and Nanoparticles in Droplets on a Superhydrophobic Surface. Advanced Materials, 2008, 20, 4263-4268.	21.0	147
140	Induced-Charge Electrophoresis of Metallodielectric Particles. Physical Review Letters, 2008, 100, 058302.	7.8	427
141	Dielectrophoretic Assembly of Metallodielectric Janus Particles in AC Electric Fields. Langmuir, 2008, 24, 13312-13320.	3.5	261
142	Surface-Guided Templating of Particle Assemblies Inside Drying Sessile Droplets. Langmuir, 2008, 24, 1371-1380.	3.5	99
143	Long-Term Stabilization of Foams and Emulsions with In-Situ Formed Microparticles from Hydrophobic Cellulose. Langmuir, 2008, 24, 9245-9253.	3.5	183
144	On-chip electric field driven assembly of biocomposites from live cells and functionalized particles. Soft Matter, 2008, 4, 726.	2.7	52

9

ORLIN D VELEV

#	Article	IF	CITATIONS
145	Remotely powered distributed microfluidic pumps and mixers based on miniature diodes. Lab on A Chip, 2008, 8, 117-124.	6.0	65
146	Microwave, Photo- and Thermally Responsive PNIPAmâ^'Gold Nanoparticle Microgels. Langmuir, 2008, 24, 11959-11966.	3.5	82
147	Phase diagram for stimulus-responsive materials containing dipolar colloidal particles. Physical Review E, 2008, 77, 031401.	2.1	62
148	Development and evaluation of realistic microbioassays in freely suspended droplets on a chip. Biomicrofluidics, 2007, 1, 014107.	2.4	39
149	Polyelectrolyte Diode:  Nonlinear Current Response of a Junction between Aqueous Ionic Gels. Journal of the American Chemical Society, 2007, 129, 10801-10806.	13.7	142
150	Two-Dimensional Nanoparticle Arrays Derived from Ferritin Monolayers. Langmuir, 2007, 23, 5498-5504.	3.5	35
151	Physicochemical Variables Affecting the Rheology and Microstructure of Rennet Casein Gels. Journal of Agricultural and Food Chemistry, 2007, 55, 2688-2697.	5.2	26
152	Fabrication of magnetically-functionalized lens- and donut-shaped microparticles by a surface-formation technique. Physical Chemistry Chemical Physics, 2007, 9, 6300.	2.8	11
153	Sessile Droplet Templating of Miniature Porous Hemispheres from Colloid Crystals. Chemistry of Materials, 2007, 19, 141-143.	6.7	47
154	Characterization and Optimization of Gold Nanoparticle-Based Silver-Enhanced Immunoassays. Analytical Chemistry, 2007, 79, 3810-3820.	6.5	181
155	Assembly and characterization of colloid-based antireflective coatings on multicrystalline silicon solar cells. Journal of Materials Chemistry, 2007, 17, 791-799.	6.7	147
156	Engineered deposition of coatings from nano- and micro-particles: A brief review of convective assembly at high volume fraction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 311, 2-10.	4.7	142
157	Remotely powered self-propelling particles and micropumps based on miniature diodes. Nature Materials, 2007, 6, 235-240.	27.5	279
158	Controlled assembly of SERS substrates templated by colloidal crystal films. Journal of Materials Chemistry, 2006, 16, 1207-1211.	6.7	141
159	Evaporation-Induced Particle Microseparations inside Droplets Floating on a Chip. Langmuir, 2006, 22, 1459-1468.	3.5	76
160	Emulsion-Based Synthesis of Reversibly Swellable, Magnetic Nanoparticle-Embedded Polymer Microcapsules. Chemistry of Materials, 2006, 18, 3308-3313.	6.7	94
161	Formation of Polymer Microrods in Shear Flow by Emulsification â^' Solvent Attrition Mechanism. Langmuir, 2006, 22, 765-774.	3.5	48
162	Novel Materials Derived from Particles Assembled on Liquid Surfaces. , 2006, , 225-297.		9

#	Article	IF	CITATIONS
163	Rapid Deposition and Long-Range Alignment of Nanocoatings and Arrays of Electrically Conductive Wires from Tobacco Mosaic Virus. Small, 2006, 2, 1462-1466.	10.0	73
164	On-chip micromanipulation and assembly of colloidal particles by electric fields. Soft Matter, 2006, 2, 738.	2.7	300
165	MATERIALS SCIENCE: Enhanced: Self-Assembly of Unusual Nanoparticle Crystals. Science, 2006, 312, 376-377.	12.6	64
166	Molecular Effects of Anionic Surfactants on Lysozyme Precipitation and Crystallization. Crystal Growth and Design, 2005, 5, 351-359.	3.0	10
167	Ordered Silicon Nanocavity Arrays in Surface-Assisted Desorption/Ionization Mass Spectrometry. Analytical Chemistry, 2005, 77, 1088-1095.	6.5	153
168	Role of the Micro- and Nanostructure in the Performance of Surface-Enhanced Raman Scattering Substrates Assembled from Gold Nanoparticles. Applied Spectroscopy, 2005, 59, 401-409.	2.2	52
169	Convective Assembly of Antireflective Silica Coatings with Controlled Thickness and Refractive Index. Chemistry of Materials, 2005, 17, 3642-3651.	6.7	158
170	An AC Electrokinetic Technique for Collection and Concentration of Particles and Cells on Patterned Electrodes. Langmuir, 2005, 21, 6603-6612.	3.5	130
171	Rapid Deposition of Gold Nanoparticle Films with Controlled Thickness and Structure by Convective Assembly. Chemistry of Materials, 2005, 17, 28-35.	6.7	57
172	Convective Deposition of Silica Nano-Colloidal Particles and Preparation of Anti-Reflective Film by Controlling Refractive Index. Korean Journal of Materials Research, 2005, 15, 285-292.	0.2	1
173	ASSEMBLY AND APPLICATION OF CARBON NANOTUBE FIBRILS WITH CONTROLLED AND VARIABLE LENGTHS BY DIELECTROPHORESIS. , 2005, , .		0
174	Fabrication of Novel Types of Colloidosome Microcapsules for Drug Delivery Applications. Materials Research Society Symposia Proceedings, 2004, 845, 140.	0.1	2
175	Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors. Nature Materials, 2004, 4, 98-102.	27.5	205
176	Scalable Synthesis of a New Class of Polymer Microrods by a Liquid-Liquid Dispersion Technique. Advanced Materials, 2004, 16, 1653-1657.	21.0	103
177	Foam Superstabilization by Polymer Microrods. Langmuir, 2004, 20, 10371-10374.	3.5	361
178	Two-Dimensional Crystallization of Microspheres by a Coplanar AC Electric Field. Langmuir, 2004, 20, 2108-2116.	3.5	243
179	Control and Modeling of the Dielectrophoretic Assembly of On-Chip Nanoparticle Wires. Langmuir, 2004, 20, 467-476.	3.5	150
180	Cooling Effects on a Model Rennet Casein Gel System:Â Part II. Permeability and Microscopy. Langmuir, 2004, 20, 7406-7411.	3.5	16

ORLIN D VELEV

#	Article	IF	CITATIONS
181	Fabrication of "Hairy―Colloidosomes with Shells of Polymeric Microrods. Journal of the American Chemical Society, 2004, 126, 8092-8093.	13.7	300
182	Controlled, Rapid Deposition of Structured Coatings from Micro- and Nanoparticle Suspensions. Langmuir, 2004, 20, 2099-2107.	3.5	481
183	Cooling Effects on a Model Rennet Casein Gel System:Â Part I. Rheological Characterization. Langmuir, 2004, 20, 7399-7405.	3.5	21
184	Engineering of SERS substrate structure: role of micro- and nanoporosity. , 2004, , .		2
185	油膜ã,'å^©ç"¨ã⊷ãŸãf©ãfœãfãffãf—. Nature Digest, 2004, 1, 16-16.	0.0	0
186	Assembly of 1D Nanostructures into Sub-micrometer Diameter Fibrils with Controlled and Variable Length by Dielectrophoresis. Advanced Materials, 2003, 15, 1352-1355.	21.0	88
187	Casein precipitation equilibria in the presence of calcium ions and phosphates. Colloids and Surfaces B: Biointerfaces, 2003, 29, 297-307.	5.0	39
188	On-chip manipulation of free droplets. Nature, 2003, 426, 515-516.	27.8	324
189	Mobility of Adsorbed Proteins Studied by Fluorescence Recovery after Photobleaching. Langmuir, 2003, 19, 3705-3711.	3.5	22
190	Fabrication of asymmetrically coated colloid particles by microcontact printing techniques. Journal of Materials Chemistry, 2003, 13, 2445.	6.7	204
191	Fabrication of dipolar colloid particles by microcontact printing. Chemical Communications, 2003, , 2296.	4.1	126
192	Dielectrophoretic assembly of oriented and switchable two-dimensional photonic crystals. Applied Physics Letters, 2003, 82, 949-951.	3.3	134
193	Dielectrophoretic Assembly of Switchable Two-Dimensional Photonic Crystals with Specific Orientation. Materials Research Society Symposia Proceedings, 2003, 776, 681.	0.1	0
194	On-Line Spectroscopic Characterization of Sodium Cyanide with Nanostructured Gold Surface-Enhanced Raman Spectroscopy Substrates. Applied Spectroscopy, 2002, 56, 1524-1530.	2.2	44
195	Effect of pH and Ca2+-Induced Associations of Soybean Proteins. Journal of Agricultural and Food Chemistry, 2002, 50, 4953-4958.	5.2	68
196	Assembly of gold nanostructured films templated by colloidal crystals and use in surface-enhanced Raman spectroscopy. , 2002, , .		3
197	ASSEMBLY OF COLLOIDAL PARTICLES INTO NANOSTRUCTURED MATERIALS AND MICROSCOPIC DEVICES. , 2001, , 125-167.		1
198	Dielectrophoretic Assembly of Electrically Functional Microwires from Nanoparticle Suspensions. Science, 2001, 294, 1082-1086.	12.6	533

#	Article	IF	CITATIONS
199	Structured Porous Materials via Colloidal Crystal Templating: From Inorganic Oxides to Metals. Advanced Materials, 2000, 12, 531-534.	21.0	528
200	Colloidal crystals as templates for porous materials. Current Opinion in Colloid and Interface Science, 2000, 5, 56-63.	7.4	342
201	A Class of Microstructured Particles Through Colloidal Crystallization. Science, 2000, 287, 2240-2243.	12.6	478
202	Assembly of Gold Nanostructured Films Templated by Colloidal Crystals and Use in Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2000, 122, 9554-9555.	13.7	329
203	Electrokinetic behavior in synthatic process of composite particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 159, 359-371.	4.7	21
204	A class of porous metallic nanostructures. Nature, 1999, 401, 548-548.	27.8	481
205	In Situ Assembly of Colloidal Particles into Miniaturized Biosensors. Langmuir, 1999, 15, 3693-3698.	3.5	461
206	Protein Interactions in Solution Characterized by Light and Neutron Scattering: Comparison of Lysozyme and Chymotrypsinogen. Biophysical Journal, 1998, 75, 2682-2697.	0.5	319
207	Porous silica via colloidal crystallization. Nature, 1997, 389, 447-448.	27.8	820
208	Assembly of protein structures on liposomes by non-specific and specific interactions. Advances in Biophysics, 1997, 34, 139-157.	0.5	22
209	The role of additives for the behaviour of thin emulsion films stabilized by proteins. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 123-124, 155-167.	4.7	35
210	Charging of Oilâ^'Water Interfaces Due to Spontaneous Adsorption of Hydroxyl Ions. Langmuir, 1996, 12, 2045-2051.	3.5	705
211	Assembly of Latex Particles by Using Emulsion Droplets as Templates. 1. Microstructured Hollow Spheres. Langmuir, 1996, 12, 2374-2384.	3.5	580
212	Effect of the surface expansion and wettability of the capillary on the dynamic surface tension measured by the maximum bubble pressure method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 113, 117-126.	4.7	24
213	Measurement of the Drag Coefficient of Spherical Particles Attached to Fluid Interfaces. Journal of Colloid and Interface Science, 1995, 172, 147-154.	9.4	83
214	Investigation of Thin Liquid Films of Small Diameters and High Capillary Pressures by a Miniaturized Cell. Journal of Colloid and Interface Science, 1995, 175, 68-76.	9.4	54
215	Abnormal Thickness and Stability of Nonequilibrium Liquid Films. Physical Review Letters, 1995, 75, 264-267.	7.8	40
216	Formation of two-dimensional colloid crystals in liquid films under the action of capillary forces. Journal of Physics Condensed Matter, 1994, 6, A395-A402.	1.8	66

#	Article	IF	CITATIONS
217	Capillary Image Forces. Journal of Colloid and Interface Science, 1994, 167, 66-73.	9.4	43
218	Experimental investigations on model emulsion systems stabilized with non-ionic surfactant blends. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 83, 43-55.	4.7	36
219	Formation of two-dimensional structures from colloidal particles on fluorinated oil substrate. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 2077.	1.7	84
220	Spontaneous Cyclic Dimpling in Emulsion Films Due to Surfactant Mass Transfer between the Phases. Journal of Colloid and Interface Science, 1993, 159, 497-501.	9.4	52
221	Direct measurement of lateral capillary forces. Langmuir, 1993, 9, 3702-3709.	3.5	97
222	Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir, 1992, 8, 3183-3190.	3.5	1,091
223	Interfacial properties and emulsion stability in fluorinated oil—non-fluorinated oil—surfactant(s) systems. Colloids and Surfaces, 1992, 67, 81-93.	0.9	20
224	Assembly of Electrically Functional Microstructures from Colloidal Particles. , 0, , 437-464.		5
225	Light scattering of colloidal suspensions: formation and stability in bourbon whiskeys. Journal of the Institute of Brewing, 0, , .	2.3	0