
Shan-Yu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7406993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Waterâ€Lubricated Intercalation in V ₂ O ₅ ·nH ₂ O for Highâ€Capacity and Highâ€Rate Aqueous Rechargeable Zinc Batteries. Advanced Materials, 2018, 30, 1703725.	21.0	1,084
2	Identifying the Specific Nanostructures Responsible for the High Thermoelectric Performance of (Bi,Sb) ₂ Te ₃ Nanocomposites. Nano Letters, 2010, 10, 3283-3289.	9.1	484
3	The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energy and Environmental Science, 2018, 11, 1803-1810.	30.8	304
4	Reaction Mechanisms for Long-Life Rechargeable Zn/MnO ₂ Batteries. Chemistry of Materials, 2019, 31, 2036-2047.	6.7	195
5	Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems. Journal of Materials Chemistry A, 2016, 4, 15266-15280.	10.3	184
6	Resonant level-induced high thermoelectric response in indium-doped GeTe. NPG Asia Materials, 2017, 9, e343-e343.	7.9	170
7	High thermoelectric performance in Te-free (Bi,Sb) ₂ Se ₃ via structural transition induced band convergence and chemical bond softening. Energy and Environmental Science, 2016, 9, 3436-3447.	30.8	159
8	Enhanced thermoelectric properties of Bi2(Te1â^'xSex)3-based compounds as n-type legs for low-temperature power generation. Journal of Materials Chemistry, 2012, 22, 20943.	6.7	147
9	Enhanced performances of melt spun Bi2(Te,Se)3 for n-type thermoelectric legs. Intermetallics, 2011, 19, 1024-1031.	3.9	125
10	Facilitating the Operation of Lithium-Ion Cells with High-Nickel Layered Oxide Cathodes with a Small Dose of Aluminum. Chemistry of Materials, 2018, 30, 3101-3109.	6.7	119
11	Enhancing thermoelectric performance in hierarchically structured BiCuSeO by increasing bond covalency and weakening carrier–phonon coupling. Energy and Environmental Science, 2017, 10, 1590-1599.	30.8	115
12	Conductivity-limiting bipolar thermal conductivity in semiconductors. Scientific Reports, 2015, 5, 10136.	3.3	107
13	Metal nanoparticle decorated n-type Bi ₂ Te ₃ -based materials with enhanced thermoelectric performances. Nanotechnology, 2013, 24, 285702.	2.6	106
14	Separating electronic and ionic conductivity in mix-conducting layered lithium transition-metal oxides. Journal of Power Sources, 2018, 393, 75-82.	7.8	104
15	High-performance n-type YbxCo4Sb12: from partially filled skutterudites towards composite thermoelectrics. NPG Asia Materials, 2016, 8, e285-e285.	7.9	102
16	Blocking Ion Migration Stabilizes the High Thermoelectric Performance in Cu ₂ Se Composites. Advanced Materials, 2020, 32, e2003730.	21.0	99
17	Electronegative guests in CoSb ₃ . Energy and Environmental Science, 2016, 9, 2090-2098.	30.8	93
18	Anisotropic Multicenter Bonding and High Thermoelectric Performance in Electron-Poor CdSb. Chemistry of Materials, 2015, 27, 1071-1081.	6.7	81

Shan-Yu Wang

#	Article	IF	CITATIONS
19	Complex electronic structure and compositing effect in high performance thermoelectric BiCuSeO. Nature Communications, 2019, 10, 2814.	12.8	81
20	On Intensifying Carrier Impurity Scattering to Enhance Thermoelectric Performance in Crâ€Đoped Ce _y Co ₄ Sb ₁₂ . Advanced Functional Materials, 2015, 25, 6660-6670.	14.9	77
21	Two-dimensional thermoelectrics with Rashba spin-split bands in bulk BiTel. Physical Review B, 2014, 90,	3.2	74
22	Enhancement of the thermoelectric performance of β-Zn4Sb3 by in situ nanostructures and minute Cd-doping. Acta Materialia, 2011, 59, 4805-4817.	7.9	70
23	Electrochemical and interfacial behavior of all solid state batteries using Li10SnP2S12 solid electrolyte. Journal of Power Sources, 2018, 396, 824-830.	7.8	54
24	All solid thick oxide cathodes based on low temperature sintering for high energy solid batteries. Energy and Environmental Science, 2021, 14, 5044-5056.	30.8	41
25	Enhanced Thermoelectric Performance in Cu-Intercalated BiTeI by Compensation Weakening Induced Mobility Improvement. Scientific Reports, 2015, 5, 14319.	3.3	33
26	Minimum Thermal Conductivity in Weak Topological Insulators with Bismuthâ€Based Stack Structure. Advanced Functional Materials, 2016, 26, 5360-5367.	14.9	29
27	Quantitative nanoscale mapping of three-phase thermal conductivities in filled skutterudites via scanning thermal microscopy. National Science Review, 2018, 5, 59-69.	9.5	26
28	A multi-functional interface derived from thiol-modified mesoporous carbon in lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 13372-13381.	10.3	17