
Ashley R Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7405605/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural variation analysis of 6,500 whole genome sequences in amyotrophic lateral sclerosis. Npj Genomic Medicine, 2022, 7, 8.	3.8	23
2	Whole-genome sequencing reveals that variants in the Interleukin 18 Receptor Accessory Protein 3′UTR protect against ALS. Nature Neuroscience, 2022, 25, 433-445.	14.8	16
3	Meta-analysis of genome-wide DNA methylation identifies shared associations across neurodegenerative disorders. Genome Biology, 2021, 22, 90.	8.8	49
4	A HML6 endogenous retrovirus on chromosome 3 is upregulated in amyotrophic lateral sclerosis motor cortex. Scientific Reports, 2021, 11, 14283.	3.3	13
5	Association of Variants in the <i>SPTLC1</i> Gene With Juvenile Amyotrophic Lateral Sclerosis. JAMA Neurology, 2021, 78, 1236.	9.0	46
6	<i>SCFD1</i> expression quantitative trait loci in amyotrophic lateral sclerosis are differentially expressed. Brain Communications, 2021, 3, fcab236.	3.3	14
7	Genome-wide Meta-analysis Finds the ACSL5-ZDHHC6 Locus Is Associated with ALS and Links Weight Loss to the Disease Genetics. Cell Reports, 2020, 33, 108323.	6.4	41
8	Relationship between smoking and ALS: Mendelian randomisation interrogation of causality. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 1312-1315.	1.9	11
9	Cross-reactive probes on Illumina DNA methylation arrays: a large study on ALS shows that a cautionary approach is warranted in interpreting epigenome-wide association studies. NAR Genomics and Bioinformatics, 2020, 2, Iqaa105.	3.2	13
10	C9orf72 intermediate expansions of 24–30 repeats are associated with ALS. Acta Neuropathologica Communications, 2019, 7, 115.	5.2	75
11	Genomeâ€wide survey of copy number variants finds MAPT duplications in progressive supranuclear palsy. Movement Disorders, 2019, 34, 1049-1059.	3.9	24
12	ALSgeneScanner: a pipeline for the analysis and interpretation of DNA sequencing data of ALS patients. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 207-215.	1.7	11
13	Predicting the future of ALS: the impact of demographic change and potential new treatments on the prevalence of ALS in the United Kingdom, 2020–2116. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 264-274.	1.7	21
14	Telomere length is greater in ALS than in controls: a whole genome sequencing study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 229-234.	1.7	18
15	Younger age of onset in familial amyotrophic lateral sclerosis is a result of pathogenic gene variants, rather than ascertainment bias. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 268-271.	1.9	38
16	Joint genome-wide association study of progressive supranuclear palsy identifies novel susceptibility loci and genetic correlation to neurodegenerative diseases. Molecular Neurodegeneration, 2018, 13, 41.	10.8	77
17	ATXN2 trinucleotide repeat length correlates with risk of ALS. Neurobiology of Aging, 2017, 51, 178.e1-178.e9.	3.1	86
18	A comprehensive analysis of rare genetic variation in amyotrophic lateral sclerosis in the UK. Brain, 2017, 140, 1611-1618.	7.6	71

2

Ashley **R** Jones

#	Article	IF	CITATIONS
19	Meta-analysis of pharmacogenetic interactions in amyotrophic lateral sclerosis clinical trials. Neurology, 2017, 89, 1915-1922.	1.1	82
20	Identification of miRNAs as Potential Biomarkers in Cerebrospinal Fluid from Amyotrophic Lateral Sclerosis Patients. NeuroMolecular Medicine, 2016, 18, 551-560.	3.4	67
21	Rare genetic variation in UNC13A may modify survival in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 593-599.	1.7	22
22	Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1043-1048.	21.4	494
23	NEK1 variants confer susceptibility to amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1037-1042.	21.4	218
24	Regionality of disease progression predicts prognosis in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 442-447.	1.7	3
25	Stratified gene expression analysis identifies major amyotrophic lateral sclerosis genes. Neurobiology of Aging, 2015, 36, 2006.e1-2006.e9.	3.1	22
26	Health utility decreases with increasing clinical stage in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 285-291.	1.7	26
27	Residual association at C9orf72 suggests an alternative amyotrophic lateral sclerosis-causing hexanucleotide repeat. Neurobiology of Aging, 2013, 34, 2234.e1-2234.e7.	3.1	22