
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/740512/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Silver Release from Silver Nanoparticles in Natural Waters. Environmental Science & Technology, 2013, 47, 4140-4146.	4.6	265
2	Binding of Silver Nanoparticles to Bacterial Proteins Depends on Surface Modifications and Inhibits Enzymatic Activity. Environmental Science & Technology, 2010, 44, 2163-2168.	4.6	239
3	Non-uraninite Products of Microbial U(VI) Reduction. Environmental Science & Technology, 2010, 44, 9456-9462.	4.6	220
4	Uranium redox transition pathways in acetate-amended sediments. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4506-4511.	3.3	161
5	Cometabolism of Cr(VI) byShewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth. Biotechnology and Bioengineering, 2003, 83, 627-637.	1.7	151
6	Mobile uranium(IV)-bearing colloids in a mining-impacted wetland. Nature Communications, 2013, 4, 2942.	5.8	151
7	Functional Intestinal Bile Acid 7α-Dehydroxylation by Clostridium scindens Associated with Protection from Clostridium difficile Infection in a Gnotobiotic Mouse Model. Frontiers in Cellular and Infection Microbiology, 2016, 6, 191.	1.8	151
8	Biogenic Uraninite Nanoparticles and Their Importance for Uranium Remediation. Elements, 2008, 4, 407-412.	0.5	148
9	Role of proteins in controlling selenium nanoparticle size. Nanotechnology, 2011, 22, 195605.	1.3	144
10	Global Transcriptional Profiling of Shewanella oneidensis MR-1 during Cr(VI) and U(VI) Reduction. Applied and Environmental Microbiology, 2005, 71, 7453-7460.	1.4	139
11	Uranium isotopes fingerprint biotic reduction. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5619-5624.	3.3	133
12	Products of abiotic U(VI) reduction by biogenic magnetite and vivianite. Geochimica Et Cosmochimica Acta, 2011, 75, 2512-2528.	1.6	130
13	SunCHem: an integrated process for the hydrothermal production of methane from microalgae and CO2 mitigation. Journal of Applied Phycology, 2009, 21, 529-541.	1.5	126
14	Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock. Nature Communications, 2016, 7, 12770.	5.8	120
15	Structure of Biogenic Uraninite Produced by <i>Shewanella oneidensis</i> Strain MR-1. Environmental Science & Technology, 2008, 42, 7898-7904.	4.6	119
16	The product of microbial uranium reduction includes multiple species with U(Ⅳ)–phosphate coordination. Geochimica Et Cosmochimica Acta, 2014, 131, 115-127.	1.6	114
17	Uranium speciation and stability after reductive immobilization in aquifer sediments. Geochimica Et Cosmochimica Acta, 2011, 75, 6497-6510.	1.6	112
18	Quantitative Separation of Monomeric U(IV) from UO ₂ in Products of U(VI) Reduction. Environmental Science & Technology, 2012, 46, 6150-6157.	4.6	107

#	Article	IF	CITATIONS
19	Toxicity of Cr(III) toShewanellasp. Strain MR-4 during Cr(VI) Reduction. Environmental Science & Technology, 2007, 41, 214-220.	4.6	106
20	Comparative dissolution kinetics of biogenic and chemogenic uraninite under oxidizing conditions in the presence of carbonate. Geochimica Et Cosmochimica Acta, 2009, 73, 6065-6083.	1.6	98
21	Speciation of naturally-accumulated uranium in an organic-rich soil of an alpine region (Switzerland). Geochimica Et Cosmochimica Acta, 2010, 74, 2082-2098.	1.6	95
22	Dissolution of Biogenic and Synthetic UO2under Varied Reducing Conditions. Environmental Science & Technology, 2008, 42, 5600-5606.	4.6	91
23	Relative Reactivity of Biogenic and Chemogenic Uraninite and Biogenic Noncrystalline U(IV). Environmental Science & Technology, 2013, 47, 9756-9763.	4.6	81
24	Biogeochemical Controls on the Product of Microbial U(VI) Reduction. Environmental Science & Technology, 2013, 47, 12351-12358.	4.6	79
25	Genomic Insights into Mn(II) Oxidation by the Marine Alphaproteobacterium <i>Aurantimonas</i> sp. Strain SI85-9A1. Applied and Environmental Microbiology, 2008, 74, 2646-2658.	1.4	77
26	Active sulfur cycling in the terrestrial deep subsurface. ISME Journal, 2020, 14, 1260-1272.	4.4	72
27	Fabric characteristics and mechanical response of bio-improved sand to various treatment conditions. Geotechnique Letters, 2016, 6, 50-57.	0.6	70
28	<i>In vitro</i> and <i>in vivo</i> characterization of <i>Clostridium scindens</i> bile acid transformations. Gut Microbes, 2019, 10, 481-503.	4.3	70
29	Oxidative Dissolution of Biogenic Uraninite in Groundwater at Old Rifle, CO. Environmental Science & Technology, 2011, 45, 8748-8754.	4.6	66
30	Arsenic Methylation Dynamics in a Rice Paddy Soil Anaerobic Enrichment Culture. Environmental Science & Technology, 2017, 51, 10546-10554.	4.6	61
31	Biogeography of microbial bile acid transformations along the murine gut. Journal of Lipid Research, 2020, 61, 1450-1463.	2.0	61
32	The genome of the Gramâ€positive metal―and sulfateâ€reducing bacterium <i>Desulfotomaculum reducens</i> strain Mlâ€1. Environmental Microbiology, 2010, 12, 2738-2754.	1.8	60
33	Citrate Enhanced Uranyl Adsorption on Goethite: An EXAFS Analysis. Journal of Colloid and Interface Science, 2001, 244, 211-219.	5.0	58
34	Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits. Nature Communications, 2017, 8, 15538.	5.8	57
35	Nanoscale mechanism of UO2 formation through uranium reduction by magnetite. Nature Communications, 2020, 11, 4001.	5.8	57
36	Speciation and Reactivity of Uranium Products Formed during <i>in Situ</i> Bioremediation in a Shallow Alluvial Aquifer. Environmental Science & Technology, 2014, 48, 12842-12850.	4.6	56

#	Article	IF	CITATIONS
37	Structural Similarities between Biogenic Uraninites Produced by Phylogenetically and Metabolically Diverse Bacteria. Environmental Science & Technology, 2009, 43, 8295-8301.	4.6	50
38	Arsenic Speciation in Mekong Delta Sediments Depends on Their Depositional Environment. Environmental Science & Technology, 2018, 52, 3431-3439.	4.6	50
39	Fe(III) reduction during pyruvate fermentation by <i><scp>D</scp>esulfotomaculum reducens</i> strain <scp>MI</scp> â€1. Geobiology, 2014, 12, 48-61.	1.1	44
40	Metal reduction by spores of <i>Desulfotomaculum reducens</i> . Environmental Microbiology, 2009, 11, 3007-3017.	1.8	42
41	Genome analysis of Desulfotomaculum kuznetsovii strain 17T reveals a physiological similarity with Pelotomaculum thermopropionicum strain SIT Standards in Genomic Sciences, 2013, 8, 69-87.	1.5	42
42	Fifteen years of microbiological investigation in Opalinus Clay at the Mont Terri rock laboratory (Switzerland). Swiss Journal of Geosciences, 2017, 110, 343-354.	0.5	42
43	Geochemical Control on Uranium(IV) Mobility in a Mining-Impacted Wetland. Environmental Science & Technology, 2014, 48, 10062-10070.	4.6	41
44	Mechanism of Uranium Reduction and Immobilization in <i>Desulfovibrio vulgaris</i> Biofilms. Environmental Science & Technology, 2015, 49, 10553-10561.	4.6	41
45	Impact of iron reduction on the metabolism of <i>Clostridium acetobutylicum</i> . Environmental Microbiology, 2019, 21, 3548-3563.	1.8	38
46	Biogeochemical Cycling by a Low-Diversity Microbial Community in Deep Groundwater. Frontiers in Microbiology, 2018, 9, 2129.	1.5	35
47	Rapid Mobilization of Noncrystalline U(IV) Coupled with FeS Oxidation. Environmental Science & Technology, 2016, 50, 1403-1411.	4.6	34
48	Effect of Mn(II) on the Structure and Reactivity of Biogenic Uraninite. Environmental Science & Technology, 2009, 43, 6541-6547.	4.6	32
49	U(VI) reduction by spores of Clostridium acetobutylicum. Research in Microbiology, 2010, 161, 765-771.	1.0	31
50	Speciation-Dependent Kinetics of Uranium(VI) Bioreduction. Geomicrobiology Journal, 2011, 28, 396-409.	1.0	31
51	Variability in Arsenic Methylation Efficiency across Aerobic and Anaerobic Microorganisms. Environmental Science & Technology, 2020, 54, 14343-14351.	4.6	31
52	The Response of Shewanella oneidensis MR-1 to Cr(III) Toxicity Differs from that to Cr(VI). Frontiers in Microbiology, 2011, 2, 223.	1.5	29
53	A minimalistic microbial food web in an excavated deep subsurface clay rock. FEMS Microbiology Ecology, 2016, 92, fiv138.	1.3	29
54	Chromate Resistance Mechanisms in Leucobacter chromiiresistens. Applied and Environmental Microbiology, 2018, 84, .	1.4	29

#	Article	IF	CITATIONS
55	Variability in DPA and Calcium Content in the Spores of Clostridium Species. Frontiers in Microbiology, 2016, 7, 1791.	1.5	27
56	Association of uranyl with the cell wall of Pseudomonas fluorescens inhibits metabolism. Geochimica Et Cosmochimica Acta, 2003, 67, 4057-4066.	1.6	25
57	Products of in Situ Corrosion of Depleted Uranium Ammunition in Bosnia and Herzegovina Soils. Environmental Science & Technology, 2016, 50, 12266-12274.	4.6	25
58	Microbial communities associated with uranium in-situ recovery mining process are related to acid mine drainage assemblages. Science of the Total Environment, 2018, 628-629, 26-35.	3.9	25
59	Membrane Vesicles as a Novel Strategy for Shedding Encrusted Cell Surfaces. Minerals (Basel,) Tj ETQq1 1 0.784	314 rgBT /	Oyerlock 10
60	The anaerobic corrosion of carbon steel in compacted bentonite exposed to natural Opalinus Clay porewater containing native microbial populations. Corrosion Engineering Science and Technology, 2017, 52, 101-112.	0.7	24
61	Long-Term in Situ Oxidation of Biogenic Uraninite in an Alluvial Aquifer: Impact of Dissolved Oxygen and Calcium. Environmental Science & Technology, 2015, 49, 7340-7347.	4.6	23
62	Complete genome sequence of the sulfate-reducing firmicute Desulfotomaculum ruminis type strain (DLT). Standards in Genomic Sciences, 2012, 7, 304-319.	1.5	22
63	Characterization of the surfaceome of the metal-reducing bacterium Desulfotomaculum reducens. Frontiers in Microbiology, 2014, 5, 432.	1.5	22
64	Energy efficiency and biological interactions define the core microbiome of deep oligotrophic groundwater. Nature Communications, 2021, 12, 4253.	5.8	22
65	Chemical speciation and toxicity of metals assessed by three bioluminescence-based assays using marine organisms. Environmental Toxicology, 2004, 19, 161-178.	2.1	21
66	Composition, stability, and measurement of reduced uranium phases for groundwater bioremediation at Old Rifle, CO. Applied Geochemistry, 2011, 26, S167-S169.	1.4	21
67	Colloidal Size and Redox State of Uranium Species in the Porewater of a Pristine Mountain Wetland. Environmental Science & Technology, 2019, 53, 9361-9369.	4.6	21
68	The Response of <i>Desulfotomaculum reducens</i> MI-1 to U(VI) Exposure: A Transcriptomic Study. Geomicrobiology Journal, 2011, 28, 483-496.	1.0	19
69	As release under the microbial sulfate reduction during redox oscillations in the upper Mekong delta aquifers, Vietnam: A mechanistic study. Science of the Total Environment, 2019, 663, 718-730.	3.9	19
70	Effect of Aging on the Stability of Microbially Reduced Uranium in Natural Sediment. Environmental Science & Technology, 2020, 54, 613-620.	4.6	19
71	Ligandâ€5upported Facile Conversion of Uranyl(VI) into Uranium(IV) in Organic and Aqueous Media. Angewandte Chemie - International Edition, 2020, 59, 6756-6759.	7.2	19
72	Impact of Microbial Mn Oxidation on the Remobilization of Bioreduced U(IV). Environmental Science & Technology, 2013, 47, 3606-3613.	4.6	18

#	Article	IF	CITATIONS
73	Rates of microbial hydrogen oxidation and sulfate reduction in Opalinus Clay rock. Applied Geochemistry, 2016, 72, 42-50.	1.4	18
74	Fate of Uranyl in a Quaternary System Composed of Uranyl, Citrate, Goethite, andPseudomonas fluorescens. Environmental Science & Technology, 2003, 37, 3555-3559.	4.6	17
75	Role of Iron Sulfide Phases in the Stability of Noncrystalline Tetravalent Uranium in Sediments. Environmental Science & Technology, 2020, 54, 4840-4846.	4.6	17
76	Biological Reduction of a U(V)–Organic Ligand Complex. Environmental Science & Technology, 2021, 55, 4753-4761.	4.6	16
77	Active anaerobic methane oxidation and sulfur disproportionation in the deep terrestrial subsurface. ISME Journal, 2022, 16, 1583-1593.	4.4	16
78	Meta-omics-aided isolation of an elusive anaerobic arsenic-methylating soil bacterium. ISME Journal, 2022, 16, 1740-1749.	4.4	16
79	Associations between inorganic arsenic in rice and groundwater arsenic in the Mekong Delta. Chemosphere, 2021, 265, 129092.	4.2	15
80	Phylogenetic comparison of Desulfotomaculum species of subgroup 1a and description of Desulfotomaculum reducens sp. nov International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 762-767.	0.8	15
81	H2-fuelled microbial metabolism in Opalinus Clay. Applied Clay Science, 2019, 174, 69-76.	2.6	14
82	Microbially Mediated Release of As from Mekong Delta Peat Sediments. Environmental Science & Technology, 2019, 53, 10208-10217.	4.6	12
83	Chromate tolerance and removal of bacterial strains isolated from uncontaminated and chromium-polluted environments. World Journal of Microbiology and Biotechnology, 2019, 35, 56.	1.7	12
84	Effect of Competing Electron Acceptors on the Reduction of U(VI) by <i>Desulfotomaculum reducens</i> . Geomicrobiology Journal, 2010, 27, 435-443.	1.0	11
85	Uranium Isotope Fractionation during the Anoxic Mobilization of Noncrystalline U(IV) by Ligand Complexation. Environmental Science & Technology, 2021, 55, 7959-7969.	4.6	11
86	Environmental Mineralogy: New Challenges, New Materials. Elements, 2015, 11, 247-252.	0.5	10
87	The Small RNA RyhB Is a Regulator of Cytochrome Expression in Shewanella oneidensis. Frontiers in Microbiology, 2018, 9, 268.	1.5	10
88	Beam-induced oxidation of monomeric U(IV)Âspecies. Journal of Synchrotron Radiation, 2013, 20, 197-199.	1.0	9
89	Combined scanning transmission X-ray and electron microscopy for the characterization of bacterial endospores. FEMS Microbiology Letters, 2014, 358, 188-193.	0.7	8
90	Persistence of the Isotopic Signature of Pentavalent Uranium in Magnetite. Environmental Science & Technology, 2022, 56, 1753-1762.	4.6	7

#	Article	IF	CITATIONS
91	Biostimulation as a sustainable solution for acid neutralization and uranium immobilization post acidic in-situ recovery. Science of the Total Environment, 2022, 822, 153597.	3.9	6
92	Growth and Persistence of an Aerobic Microbial Community in Wyoming Bentonite MX-80 Despite Anoxic in situ Conditions. Frontiers in Microbiology, 2022, 13, 858324.	1.5	6
93	Interplay of S and As in Mekong Delta sediments during redox oscillations. Geoscience Frontiers, 2019, 10, 1715-1729.	4.3	5
94	Ab initio and steady-state models for uranium isotope fractionation in multi-step biotic and abiotic reduction. Geochimica Et Cosmochimica Acta, 2021, 307, 212-227.	1.6	5
95	Investigation of sporulation in the <scp><i>D</i></scp> <i>esulfotomaculum</i> genus: a genomic comparison with the genera <scp><i>B</i></scp> <i>acillus</i> and <scp><i>C</i></scp> <i>CCC<i>C<i>C<i>C<i>C</i></i></i></i></i>	1.0	3
96	Fifteen years of microbiological investigation in Opalinus Clay at the Mont Terri rock laboratory (Switzerland). Swiss Journal of Geosciences Supplement, 2018, , 345-356.	0.0	2
97	<i>In Situ</i> Biostimulation of Cr(VI) Reduction in a Fast-Flowing Oxic Aquifer. ACS Earth and Space Chemistry, 2020, 4, 2018-2030.	1.2	2
98	Implantation of Bacillus pseudomycoides Chromate Transporter Increases Chromate Tolerance in Bacillus subtilis. Frontiers in Microbiology, 2022, 13, 842623.	1.5	2
99	Molecular techniques for understanding microbial abundance and activity in clay barriers used for geodisposal. , 2021, , 71-96.		1
100	Uranyl reduction by Geobacter sulfurreducens in the presence or absence of iron. , 2008, , 725-732.		1
101	Environmental implications of Mn(II)-reacted biogenic UO2. , 2008, , 755-762.		0