
Fang Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7405117/publications.pdf Version: 2024-02-01

FANC YUAN

#	Article	IF	CITATIONS
1	Bilateral Interface Engineering toward Efficient 2D–3D Bulk Heterojunction Tin Halide Lead-Free Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 713-721.	17.4	191
2	Construction of Compact Methylammonium Bismuth Iodide Film Promoting Lead-Free Inverted Planar Heterojunction Organohalide Solar Cells with Open-Circuit Voltage over 0.8 V. Journal of Physical Chemistry Letters, 2017, 8, 394-400.	4.6	151
3	A Strategy for Architecture Design of Crystalline Perovskite Lightâ€Emitting Diodes with High Performance. Advanced Materials, 2018, 30, e1800251.	21.0	148
4	Conjugated Molecules "Bridge― Functional Ligand toward Highly Efficient and Longâ€Term Stable Perovskite Solar Cell. Advanced Functional Materials, 2019, 29, 1808119.	14.9	88
5	A Cocktail of Multiple Cations in Inorganic Halide Perovskite toward Efficient and Highly Stable Blue Light-Emitting Diodes. ACS Energy Letters, 2020, 5, 1062-1069.	17.4	79
6	One-Step Co-Evaporation of All-Inorganic Perovskite Thin Films with Room-Temperature Ultralow Amplified Spontaneous Emission Threshold and Air Stability. ACS Applied Materials & Interfaces, 2018, 10, 40661-40671.	8.0	76
7	Suppressing Ion Migration Enables Stable Perovskite Lightâ€Emitting Diodes with Allâ€Inorganic Strategy. Advanced Functional Materials, 2020, 30, 2001834.	14.9	76
8	Chemical sintering reduced grain boundary defects for stable planar perovskite solar cells. Nano Energy, 2019, 56, 741-750.	16.0	65
9	Flexible and Transparent Ferroferric Oxide-Modified Silver Nanowire Film for Efficient Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2020, 12, 2826-2834.	8.0	62
10	Formation of ultrasmooth perovskite films toward highly efficient inverted planar heterojunction solar cells by micro-flowing anti-solvent deposition in air. Journal of Materials Chemistry A, 2016, 4, 6295-6303.	10.3	61
11	Rubidium Doping for Enhanced Performance of Highly Efficient Formamidinium-Based Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 9849-9857.	8.0	58
12	Surface mediated ligands addressing bottleneck of room-temperature synthesized inorganic perovskite nanocrystals toward efficient light-emitting diodes. Nano Energy, 2020, 70, 104467.	16.0	56
13	Highly efficient and stable perovskite solar cells enabled by low-dimensional perovskitoids. Science Advances, 2022, 8, eabk2722.	10.3	53
14	High Stability and Ultralow Threshold Amplified Spontaneous Emission from Formamidinium Lead Halide Perovskite Films. Journal of Physical Chemistry C, 2017, 121, 15318-15325.	3.1	50
15	Ultra-stable CsPbBr ₃ nanocrystals with near-unity photoluminescence quantum yield <i>via</i> postsynthetic surface engineering. Journal of Materials Chemistry A, 2019, 7, 26116-26122.	10.3	50
16	Vacuum Dual-Source Thermal-Deposited Lead-Free Cs ₃ Cu ₂ I ₅ Films with High Photoluminescence Quantum Yield for Deep-Blue Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 52967-52975.	8.0	50
17	Allâ€Inorganic Heteroâ€Structured Cesium Tin Halide Perovskite Lightâ€Emitting Diodes With Current Density Over 900 A cm ^{â^'2} and Its Amplified Spontaneous Emission Behaviors. Physica Stat Solidi - Rapid Research Letters, 2018, 12, 1800090.	:u 8. 4	47
18	Highly-efficient and low-temperature perovskite solar cells by employing a Bi-hole transport layer consisting of vanadium oxide and copper phthalocyanine. Chemical Communications, 2018, 54, 6177-6180.	4.1	37

Fang Yuan

#	Article	IF	CITATIONS
19	Initiating crystal growth kinetics of α-HC(NH2)2PbI3 for flexible solar cells with long-term stability. Nano Energy, 2016, 26, 438-445.	16.0	35
20	Plasmonic enhancement for high efficient and stable perovskite solar cells by employing "hot spots" Au nanobipyramids. Organic Electronics, 2018, 60, 1-8.	2.6	32
21	Photoinduced Cross Linkable Polymerization of Flexible Perovskite Solar Cells and Modules by Incorporating Benzyl Acrylate. Advanced Functional Materials, 2022, 32, .	14.9	32
22	Modified deposition process of electron transport layer for efficient inverted planar perovskite solar cells. Chemical Communications, 2015, 51, 8986-8989.	4.1	28
23	Near-unity blue luminance from lead-free copper halides for light-emitting diodes. Nano Energy, 2022, 91, 106664.	16.0	23
24	Controlled thickness and morphology for highly efficient inverted planar heterojunction perovskite solar cells. Nanoscale, 2015, 7, 10699-10707.	5.6	21
25	High performance organo-lead halide perovskite light-emitting diodes via surface passivation of phenethylamine. Organic Electronics, 2018, 60, 57-63.	2.6	20
26	Theoretical insight into the deep-blue amplified spontaneous emission of new organic semiconductor molecules. Organic Electronics, 2014, 15, 3144-3153.	2.6	19
27	Electric field-modulated amplified spontaneous emission in organo-lead halide perovskite CH3NH3PbI3. Applied Physics Letters, 2015, 107, .	3.3	19
28	Enhancement of amplified spontaneous emission in organic gain media by the metallic film. Organic Electronics, 2014, 15, 2052-2058.	2.6	17
29	The molecular picture of amplified spontaneous emission of star-shaped functionalized-truxene derivatives. Journal of Materials Chemistry C, 2015, 3, 7004-7013.	5.5	12
30	Enhanced lasing assisted by the Ag-encapsulated Au plasmonic nanorods. Optics Letters, 2015, 40, 990.	3.3	12
31	Exploiting a Multiphase Pure Formamidinium Lead Perovskite for Efficient Green-Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 23067-23073.	8.0	11
32	High Triplet Energy Level Molecule Enables Highly Efficient Sky-Blue Perovskite Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2021, 12, 11723-11729.	4.6	11
33	Complementary Triple-Ligand Engineering Approach to Methylamine Lead Bromide Nanocrystals for High-Performance Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2022, 14, 10508-10516.	8.0	10
34	Tunable lasing on silver island films by coupling to the localized surface plasmon. Optical Materials Express, 2015, 5, 629.	3.0	9
35	Random lasing based on a nanoplasmonic hybrid structure composed of (Au core)-(Ag shell) nanorods with Ag film. Optical Materials Express, 2020, 10, 1204.	3.0	6
36	Naphthyl-functionalized oligophenyls: Photophysical properties, film morphology, and amplified spontaneous emission. Optical Materials, 2016, 54, 37-44.	3.6	5

Fang Yuan

#	Article	IF	CITATIONS
37	Enhanced performance of spectra stable blue perovskite light-emitting diodes through Poly(9-vinylcarbazole) interlayer incorporation. Organic Electronics, 2021, 96, 106259.	2.6	5
38	High efficient and stable Tin-based perovskite solar cells via short-chain ligand modification. Organic Electronics, 2021, 96, 106198.	2.6	5
39	Harvesting the Triplet Excitons of Quasi-Two-Dimensional Perovskite toward Highly Efficient White Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2022, 13, 3674-3681.	4.6	3
40	Hole Transport Layer Free Perovskite Light-Emitting Diodes With High-Brightness and Air-Stability Based on Solution-Processed CsPbBr3-Cs4PbBr6 Composites Films. Frontiers in Chemistry, 2022, 10, 828322.	3.6	2
41	Bright and efficient sky-blue perovskite light-emitting diodes via doping of π-conjugated molecule tetraphenylethylene. Organic Electronics, 2022, 102, 106441.	2.6	2