
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7405101/publications.pdf Version: 2024-02-01

FERNANDO COCUA

#	Article	IF	CITATIONS
1	Altered Mitochondrial Quality Control in Rats with Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) Induced by High-Fat Feeding. Genes, 2022, 13, 315.	2.4	18
2	Bioenergetic Aspects of Mitochondrial Actions of Thyroid Hormones. Cells, 2022, 11, 997.	4.1	19
3	Oxidative damage and mitochondrial functionality in hearts from KO UCP3 mice housed at thermoneutrality. Journal of Physiology and Biochemistry, 2022, 78, 415-425.	3.0	4
4	Ablation of uncoupling protein 3 affects interrelated factors leading to lipolysis and insulin resistance in visceral white adipose tissue. FASEB Journal, 2022, 36, e22325.	0.5	3
5	BN-PAGE-Based Approach to Study Thyroid Hormones and Mitochondrial Function. Methods in Molecular Biology, 2021, 2310, 33-45.	0.9	0
6	3,5-Diiodo-L-Thyronine (T2) Administration Affects Visceral Adipose Tissue Inflammatory State in Rats Receiving Long-Lasting High-Fat Diet. Frontiers in Endocrinology, 2021, 12, 703170.	3.5	7
7	Absence of uncoupling protein 3 at thermoneutrality influences brown adipose tissue mitochondrial functionality in mice. FASEB Journal, 2020, 34, 15146-15163.	0.5	8
8	Exercise with food withdrawal at thermoneutrality impacts fuel use, the microbiome, AMPK phosphorylation, muscle fibers, and thyroid hormone levels in rats. Physiological Reports, 2020, 8, e14354.	1.7	15
9	Absence of Uncoupling Protein-3 at Thermoneutrality Impacts Lipid Handling and Energy Homeostasis in Mice. Cells, 2019, 8, 916.	4.1	7
10	Thyroid hormone metabolites and analogues. Endocrine, 2019, 66, 105-114.	2.3	25
11	miR-22-3p is involved in gluconeogenic pathway modulated by 3,5-diiodo-L-thyronine (T2). Scientific Reports, 2019, 9, 16645.	3.3	12
12	3,5-Diiodo-L-Thyronine Exerts Metabolically Favorable Effects on Visceral Adipose Tissue of Rats Receiving a High-Fat Diet. Nutrients, 2019, 11, 278.	4.1	14
13	Both 3,3′,5-triiodothyronine and 3,5-diodo-L-thyronine Are Able to Repair Mitochondrial DNA Damage but by Different Mechanisms. Frontiers in Endocrinology, 2019, 10, 216.	3.5	8
14	3,5 Diiodo-I-Thyronine (T2) Promotes the Browning of White Adipose Tissue in High-Fat Diet-Induced Overweight Male Rats Housed at Thermoneutrality. Cells, 2019, 8, 256.	4.1	15
15	The saturation degree of fatty acids and their derived acylcarnitines determines the direct effect of metabolically active thyroid hormones on insulin sensitivity in skeletal muscle cells. FASEB Journal, 2019, 33, 1811-1823.	0.5	18
16	3,5-Diiodo-L-Thyronine Affects Structural and Metabolic Features of Skeletal Muscle Mitochondria in High-Fat-Diet Fed Rats Producing a Co-adaptation to the Glycolytic Fiber Phenotype. Frontiers in Physiology, 2018, 9, 194.	2.8	11
17	3,5-Diiodothyronine: A Novel Thyroid Hormone Metabolite and Potent Modulator of Energy Metabolism. Frontiers in Endocrinology, 2018, 9, 427.	3.5	43
18	Effect of lodothyronines on Thermogenesis: Focus on Brown Adipose Tissue. Frontiers in Endocrinology, 2018, 9, 254.	3.5	27

#	Article	lF	CITATIONS
19	Differential Effects of 3,5-Diiodo-L-Thyronine and 3,5,3'-Triiodo-L-Thyronine On Mitochondrial Respiratory Pathways in Liver from Hypothyroid Rats. Cellular Physiology and Biochemistry, 2018, 47, 2471-2483.	1.6	19
20	Direct and rapid effects of 3,5-diiodo-L-thyronine (T2). Molecular and Cellular Endocrinology, 2017, 458, 121-126.	3.2	23
21	Metabolomic analysis shows differential hepatic effects of T2 and T3 in rats after short-term feeding with high fat diet. Scientific Reports, 2017, 7, 2023.	3.3	45
22	Exercise, fasting, and mimetics: toward beneficial combinations?. FASEB Journal, 2017, 31, 14-28.	0.5	36
23	Both 3,5-Diiodo-L-Thyronine and 3,5,3′-Triiodo-L-Thyronine Prevent Short-term Hepatic Lipid Accumulation via Distinct Mechanisms in Rats Being Fed a High-Fat Diet. Frontiers in Physiology, 2017, 8, 706.	2.8	23
24	3,5,3′-Triiodo-L-Thyronine- and 3,5-Diiodo-L-Thyronine- Affected Metabolic Pathways in Liver of LDL Receptor Deficient Mice. Frontiers in Physiology, 2016, 7, 545.	2.8	8
25	Mitochondrial Actions of Thyroid Hormone. , 2016, 6, 1591-1607.		55
26	Nongenomic actions of thyroid hormone. Nature Reviews Endocrinology, 2016, 12, 111-121.	9.6	347
27	3,5-Diiodo-L-Thyronine Activates Brown Adipose Tissue Thermogenesis in Hypothyroid Rats. PLoS ONE, 2015, 10, e0116498.	2.5	38
28	Regulation of skeletal muscle mitochondrial activity by thyroid hormones: focus on the "old― triiodothyronine and the "emerging―3,5-diiodothyronine. Frontiers in Physiology, 2015, 6, 237.	2.8	36
29	The effects of 3,5-diiodothyronine on energy balance. Frontiers in Physiology, 2015, 5, 528.	2.8	38
30	Triglyceride Mobilization from Lipid Droplets Sustains the Anti-Steatotic Action of Iodothyronines in Cultured Rat Hepatocytes. Frontiers in Physiology, 2015, 6, 418.	2.8	29
31	BN-PAGE-Based Approach to Study Thyroid Hormones and Mitochondrial Function. Methods in Molecular Biology, 2015, 1241, 111-122.	0.9	1
32	Proteomic approaches for the study of tissue specific effects of 3,5,3ââ,¬Â²-triiodo-L-thyronine and 3,5-diiodo-L-thyronine in conditions of altered energy metabolism. Frontiers in Physiology, 2014, 5, 491.	2.8	9
33	3,5-Diiodo-L-Thyronine Modifies the Lipid Droplet Composition in a Model of Hepatosteatosis. Cellular Physiology and Biochemistry, 2014, 33, 344-356.	1.6	30
34	Thyroid: biological actions of â€~nonclassical' thyroid hormones. Journal of Endocrinology, 2014, 221, R1-R12.	2.6	93
35	Thyroid hormone analogues and derivatives: Actions in fatty liver. World Journal of Hepatology, 2014, 6, 114.	2.0	42
36	Studies of Complex Biological Systems with Applications to Molecular Medicine: The Need to Integrate Transcriptomic and Proteomic Approaches. , 2014, , 29-70.		0

#	Article	IF	CITATIONS
37	Thyroid hormones and mitochondria: With a brief look at derivatives and analogues. Molecular and Cellular Endocrinology, 2013, 379, 51-61.	3.2	81
38	Genetic Deletion of Uncoupling Protein 3 Exaggerates Apoptotic Cell Death in the Ischemic Heart Leading to Heart Failure. Journal of the American Heart Association, 2013, 2, e000086.	3.7	50
39	(Healthy) Ageing: Focus on Iodothyronines. International Journal of Molecular Sciences, 2013, 14, 13873-13892.	4.1	12
40	Responses of skeletal muscle lipid metabolism in rat gastrocnemius to hypothyroidism and iodothyronine administration: a putative role for FAT/CD36. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E1222-E1233.	3.5	34
41	Intracellular and plasma membrane-initiated pathways involved in the [Ca ²⁺] _i elevations induced by iodothyronines (T3 and T2) in pituitary GH ₃ cells. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E1419-E1430.	3.5	23
42	3,5-Diiodo-l-thyronine modulates the expression of genes of lipid metabolism in a rat model of fatty liver. Journal of Endocrinology, 2012, 212, 149-158.	2.6	44
43	Metabolic effects of the iodothyronine functional analogue TRC150094 on the liver and skeletal muscle of high-fat diet fed overweight rats: an integrated proteomic study. Molecular BioSystems, 2012, 8, 1987.	2.9	16
44	Direct effects of iodothyronines on excess fat storage in rat hepatocytes. Journal of Hepatology, 2011, 54, 1230-1236.	3.7	63
45	Mammalian Mitochondrial Proteome And Its Functions: Current Investigative Techniques And Future Perspectives On Ageing And Diabetes. Journal of Integrated OMICS, 2011, 1, .	0.5	4
46	Uncoupling protein 3 expression levels influence insulin sensitivity, fatty acid oxidation, and related signaling pathways. Pflugers Archiv European Journal of Physiology, 2011, 461, 153-164.	2.8	46
47	Non-receptor-mediated actions are responsible for the lipid-lowering effects of iodothyronines in FaO rat hepatoma cells. Journal of Endocrinology, 2011, 210, 59-69.	2.6	52
48	Studies of Complex Biological Systems with Applications to Molecular Medicine: The Need to Integrate Transcriptomic and Proteomic Approaches. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-19.	3.0	14
49	3,5â€Diiodoâ€Lâ€thyronine prevents highâ€fatâ€dietâ€induced insulin resistance in rat skeletal muscle through metabolic and structural adaptations. FASEB Journal, 2011, 25, 3312-3324.	0.5	78
50	Nonthyrotoxic Prevention of Diet-Induced Insulin Resistance by 3,5-Diiodo- <scp>L</scp> -Thyronine in Rats. Diabetes, 2011, 60, 2730-2739.	0.6	115
51	TRC150094 attenuates progression of nontraditional cardiovascular risk factors associated with obesity and type 2 diabetes in obese ZSF1 rats. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2011, 4, 5.	2.4	14
52	3,5-diiodo-L-thyronine increases resting metabolic rate and reduces body weight without undesirable side effects. Journal of Biological Regulators and Homeostatic Agents, 2011, 25, 655-60.	0.7	50
53	Thyroid hormones, mitochondrial bioenergetics and lipid handling. Current Opinion in Endocrinology, Diabetes and Obesity, 2010, 17, 402-407.	2.3	45
54	High levels of circulating N-terminal pro-brain natriuretic peptide in patients with hepatitis C. Journal of Viral Hepatitis, 2010, 17, 851-853.	2.0	17

#	Article	IF	CITATIONS
55	TRC150094, a novel functional analog of iodothyronines, reduces adiposity by increasing energy expenditure and fatty acid oxidation in rats receiving a highâ€fat diet. FASEB Journal, 2010, 24, 3451-3461.	0.5	38
56	UCP3 Translocates Lipid Hydroperoxide and Mediates Lipid Hydroperoxide-dependent Mitochondrial Uncoupling. Journal of Biological Chemistry, 2010, 285, 16599-16605.	3.4	48
57	PPARs: Nuclear Receptors Controlled by, and Controlling, Nutrient Handling through Nuclear and Cytosolic Signaling. PPAR Research, 2010, 2010, 1-10.	2.4	51
58	Dietary zinc supplementation of 3xTg-AD mice increases BDNF levels and prevents cognitive deficits as well as mitochondrial dysfunction. Cell Death and Disease, 2010, 1, e91-e91.	6.3	162
59	Alterations of brain and cerebellar proteomes linked to AÎ ² and tau pathology in a female triple-transgenic murine model of Alzheimer's disease. Cell Death and Disease, 2010, 1, e90-e90.	6.3	51
60	Pathways affected by 3,5-diiodo-l-thyronine in liver of high fat-fed rats: Evidence from two-dimensional electrophoresis, blue-native PAGE, and mass spectrometry. Molecular BioSystems, 2010, 6, 2256.	2.9	41
61	High Expression of Thyroid Hormone Receptors and Mitochondrial Glycerol-3-phosphate Dehydrogenase in the Liver Is Linked to Enhanced Fatty Acid Oxidation in Lou/C, a Rat Strain Resistant to Obesity. Journal of Biological Chemistry, 2009, 284, 4308-4316.	3.4	25
62	3,5-Diiodo- <scp>l</scp> -thyronine rapidly enhances mitochondrial fatty acid oxidation rate and thermogenesis in rat skeletal muscle: AMP-activated protein kinase involvement. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E497-E502.	3.5	73
63	Serum levels of proinflammatory cytokines interleukinâ€1β, interleukinâ€6, and tumor necrosis factor α in mixed cryoglobulinemia. Arthritis and Rheumatism, 2009, 60, 3841-3847.	6.7	39
64	Defining the transcriptomic and proteomic profiles of rat ageing skeletal muscle by the use of a cDNA array, 2D- and Blue native-PAGE approach. Journal of Proteomics, 2009, 72, 708-721.	2.4	85
65	Uncoupling proteins: A complex journey to function discovery. BioFactors, 2009, 35, 417-428.	5.4	69
66	3,5-diiodo-l-thyronine, by modulating mitochondrial functions, reverses hepatic fat accumulation in rats fed a high-fat diet. Journal of Hepatology, 2009, 51, 363-370.	3.7	106
67	Interrelated influence of superoxides and free fatty acids over mitochondrial uncoupling in skeletal muscle. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 826-833.	1.0	21
68	Metabolic Effects of Thyroid Hormone Derivatives. Thyroid, 2008, 18, 239-253.	4.5	209
69	Combined Effect of Gender and Caloric Restriction on Liver Proteomic Expression Profile. Journal of Proteome Research, 2008, 7, 2872-2881.	3.7	15
70	Metabolic Action of Thyroid Hormones: Insights from Functional and Proteomic Studies. Current Proteomics, 2008, 5, 45-61.	0.3	1
71	Age-related changes in renal and hepatic cellular mechanisms associated with variations in rat serum thyroid hormone levels. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E1160-E1168.	3.5	32
72	Rapid Activation by 3,5,3′-l-Triiodothyronine of Adenosine 5′-Monophosphate-Activated Protein Kinase/Acetyl-Coenzyme A Carboxylase and Akt/Protein Kinase B Signaling Pathways: Relation to Changes in Fuel Metabolism and Myosin Heavy-Chain Protein Content in Rat Gastrocnemius Muscle in Vivo. Endocrinology, 2008, 149, 6462-6470.	2.8	40

#	Article	IF	CITATIONS
73	Peroxisome Proliferator-Activated Receptor Delta: A Conserved Director of Lipid Homeostasis through Regulation of the Oxidative Capacity of Muscle. PPAR Research, 2008, 2008, 1-7.	2.4	34
74	Triiodothyronine modulates the expression of aquaporin-8 in rat liver mitochondria. Journal of Endocrinology, 2007, 192, 111-120.	2.6	30
75	Differential 3,5,3′-Triiodothyronine-Mediated Regulation of Uncoupling Protein 3 Transcription: Role of Fatty Acids. Endocrinology, 2007, 148, 4064-4072.	2.8	33
76	Acute administration of 3,5â€diiodoâ€ <scp>l</scp> â€ŧhyronine to hypothyroid rats affects bioenergetic parameters in rat skeletal muscle mitochondria. FEBS Letters, 2007, 581, 5911-5916.	2.8	28
77	Fuel economy in foodâ€deprived skeletal muscle: signaling pathways and regulatory mechanisms. FASEB Journal, 2007, 21, 3431-3441.	0.5	123
78	Thyroid-State Influence on Protein-Expression Profile of Rat Skeletal Muscle. Journal of Proteome Research, 2007, 6, 3187-3196.	3.7	20
79	Fenofibrate activates the biochemical pathways and the de novo expression of genes related to lipid handling and uncoupling protein-3 functions in liver of normal rats. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 486-495.	1.0	17
80	A Proteomics Approach to Identify Protein Expression Changes in Rat Liver Following Administration of 3,5,3†-Triiodo-l-thyronine. Journal of Proteome Research, 2006, 5, 2317-2327.	3.7	18
81	MITCHELL MEDAL LECTURE. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 1-551.	1.0	1
82	Sequential changes in the signal transduction responses of skeletal muscle following food deprivation. FASEB Journal, 2006, 20, 2579-2581.	0.5	66
83	Thyroid hormones as molecular determinants of thermogenesis. Acta Physiologica Scandinavica, 2005, 184, 265-283.	2.2	77
84	Biological effects of 3,5-diiodothyronine (T2). Biochemistry (Moscow), 2005, 70, 164-172.	1.5	72
85	3,5â€Diiodo―L â€ŧhyronine powerfully reduces adiposity in rats by increasing the burning of fats. FASEB Journal, 2005, 19, 1552-1554.	0.5	133
86	Hepatitis C Virus Infection: Evidence for an association with type 2 diabetes. Diabetes Care, 2005, 28, 2548-2550.	8.6	114
87	Thyroid-hormone effects on putative biochemical pathways involved in UCP3 activation in rat skeletal muscle mitochondria. FEBS Letters, 2005, 579, 1639-1645.	2.8	26
88	Combined cDNA array/RTâ€PCR analysis of gene expression profile in rat gastrocnemius muscle: relation to its adaptive function in energy metabolism during fasting. FASEB Journal, 2004, 18, 1-22.	0.5	52
89	Uncoupling proteins-2 and 3 influence obesity and inflammation in transgenic mice. International Journal of Obesity, 2003, 27, 433-442.	3.4	74
90	Thyroid hormone and uncoupling proteins. FEBS Letters, 2003, 543, 5-10.	2.8	125

#	Article	IF	CITATIONS
91	Fasting, lipid metabolism, and triiodothyronine in rat gastrocnemius muscle: interrelated roles of uncoupling protein 3, mitochondrial thioesterase, and coenzyme Q. FASEB Journal, 2003, 17, 1112-1114.	0.5	40
92	A function for novel uncoupling proteins: antioxidant defense of mitochondrial matrix by translocating fatty acid peroxides from the inner to the outer membrane leaflet. FASEB Journal, 2003, 17, 1585-1591.	0.5	221
93	Identification of 3,5-Diiodo-l-Thyronine-Binding Proteins in Rat Liver Cytosol by Photoaffinity Labeling. Endocrinology, 2003, 144, 2297-2303.	2.8	15
94	Are the Effects of T3 on Resting Metabolic Rate in Euthyroid Rats Entirely Caused by T3 Itself?. Endocrinology, 2002, 143, 504-510.	2.8	90
95	De novo expression of uncoupling protein 3 is associated to enhanced mitochondrial thioesterase-1 expression and fatty acid metabolism in liver of fenofibrate-treated rats. FEBS Letters, 2002, 525, 7-12.	2.8	36
96	Skeletal muscle mitochondrial free-fatty-acid content and membrane potential sensitivity in different thyroid states: involvement of uncoupling protein-3 and adenine nucleotide translocase. FEBS Letters, 2002, 532, 12-16.	2.8	20
97	Effect of age and cold exposure on morphofunctional characteristics of skeletal muscle in neonatal pigs. Pflugers Archiv European Journal of Physiology, 2002, 444, 610-618.	2.8	30
98	Thyroid Hormones and Mitochondria. Bioscience Reports, 2002, 22, 17-32.	2.4	67
99	Are the Effects of T3 on Resting Metabolic Rate in Euthyroid Rats Entirely Caused by T3 Itself?. Endocrinology, 2002, 143, 504-510.	2.8	17
100	Fenofibrate prevents and reduces body weight gain and adiposity in diet-induced obese rats. FEBS Letters, 2001, 491, 154-158.	2.8	115
101	Control of energy metabolism by iodothyronines. Journal of Endocrinological Investigation, 2001, 24, 897-913.	3.3	50
102	Monosynaptic Pathway Between the Arcuate Nucleus Expressing Glial Type II Iodothyronine 5′-Deiodinase mRNA and the Median Eminence-Projective TRH Cells of the Rat Paraventricular Nucleus. Journal of Neuroendocrinology, 2001, 10, 731-742.	2.6	51
103	Uncoupling Protein-3 Is a Molecular Determinant for the Regulation of Resting Metabolic Rate by Thyroid Hormone. Endocrinology, 2001, 142, 3414-3420.	2.8	105
104	Uncoupling Protein-3 Is a Molecular Determinant for the Regulation of Resting Metabolic Rate by Thyroid Hormone. Endocrinology, 2001, 142, 3414-3420.	2.8	27
105	Characterisation of oxidative phosphorylation in skeletal muscle mitochondria subpopulations in pig: a study using top-down elasticity analysis. FEBS Letters, 2000, 475, 84-88.	2.8	42
106	3,5-Diiodo-l-Thyronine Regulates Glucose-6-Phosphate Dehydrogenase Activity in the Rat*. Endocrinology, 2000, 141, 1729-1734.	2.8	44
107	3,5-Diiodo-L-Thyronine Regulates Glucose-6-Phosphate Dehydrogenase Activity in the Rat. Endocrinology, 2000, 141, 1729-1734.	2.8	9
108	Expression of uncoupling protein-3 and mitochondrial activity in the transition from hypothyroid to hyperthyroid state in rat skeletal muscle. FEBS Letters, 1999, 444, 250-254.	2.8	108

#	Article	IF	CITATIONS
109	Action of thyroid hormones at the cellular level: the mitochondrial target. FEBS Letters, 1999, 452, 115-120.	2.8	153
110	Brain Uncoupling Protein 2: Uncoupled Neuronal Mitochondria Predict Thermal Synapses in Homeostatic Centers. Journal of Neuroscience, 1999, 19, 10417-10427.	3.6	163
111	3,5-Diiodothyronine binds to subunit Va of cytochrome-c oxidase and abolishes the allosteric inhibition of respiration by ATP. FEBS Journal, 1998, 252, 325-330.	0.2	184
112	3,5-Diiodo- l -thyronine and 3,5,3′-triiodo- l -thyronine both improve the cold tolerance of hypothyroid rats, but possibly via different mechanisms. Pflugers Archiv European Journal of Physiology, 1998, 436, 407-414.	2.8	35
113	Segregation of the intra- and extrahypothalamic neuropeptide Y and catecholaminergic inputs on paraventricular neurons, including those producing thyrotropin-releasing hormone. Regulatory Peptides, 1998, 75-76, 117-126.	1.9	36
114	Effect of 3,5-diiodo-L-thyronine on thyroid stimulating hormone and growth hormone serum levels in hypothyroid rats. Life Sciences, 1998, 62, 2369-2377.	4.3	21
115	Fasting-Induced Increase in Type II Iodothyronine Deiodinase Activity and Messenger Ribonucleic Acid Levels Is Not Reversed by Thyroxine in the Rat Hypothalamus1. Endocrinology, 1998, 139, 2879-2884.	2.8	124
116	Effect of 3,5-di-iodo-L-thyronine on the mitochondrial energy-transduction apparatus. Biochemical Journal, 1998, 330, 521-526.	3.7	57
117	Characterization of the binding of 3,3′-di-iodo-l-thyronine to rat liver mitochondria. Journal of Endocrinology, 1997, 154, 119-124.	2.6	1
118	Induction of UCP2mRNA by thyroid hormones in rat heart. FEBS Letters, 1997, 418, 171-174.	2.8	94
119	How the thyroid controls metabolism in the rat: different roles for triiodothyronine and diiodothyronines. Journal of Physiology, 1997, 505, 529-538.	2.9	115
120	Biochemical and functional differences in rat liver mitochondrial subpopulations obtained at different gravitational forces. International Journal of Biochemistry and Cell Biology, 1996, 28, 337-343.	2.8	43
121	Calorigenic effect of diiodothyronines in the rat Journal of Physiology, 1996, 494, 831-837.	2.9	74
122	Demonstration of in vivo metabolic effects of 3,5-di-iodothyronine. Journal of Endocrinology, 1996, 149, 319-325.	2.6	44
123	Regulation of Electron Transport and Proton Pumping of Cytochrome c Oxidase by Nucleotides and Thyroid Hormones. Progress in Cell Research, 1995, 5, 19-23.	0.3	2
124	Rapid glucuronidation of tri- and tetraiodothyroacetic acid to ester glucuronides in human liver and to ether glucuronides in rat liver Endocrinology, 1994, 135, 1004-1009.	2.8	26
125	In vitro binding of 3,5-di-iodo-L-thyronine to rat liver mitochondria. Journal of Molecular Endocrinology, 1994, 13, 275-282.	2.5	44
126	Activation and inactivation of thyroid hormone by type I iodothyronine deiodinase. FEBS Letters, 1994, 344, 143-146.	2.8	62

#	Article	IF	CITATIONS
127	Interaction of diiodothyronines with isolated cytochromecoxidase. FEBS Letters, 1994, 346, 295-298.	2.8	66
128	Specific binding sites for 3,3′-diiodo-l-thyronine (3,3′-T2) in rat liver mitochondria. FEBS Letters, 1994, 351, 237-240.	2.8	23
129	Rapid stimulation in vitro of rat liver cytochrome oxidase activity by 3,5-diiodo-l-thyronine and by 3,3′-diiodo-l-thyronine. Molecular and Cellular Endocrinology, 1994, 99, 89-94.	3.2	62
130	Effect of thyroid status on the oxidative capacity of Sertoli cells isolated from immature rat testis. European Journal of Endocrinology, 1994, 130, 308-312.	3.7	10
131	Cold exposure induces different uncoupling-protein thermogenin masking/unmasking processes in brown adipose tissue depending on mitochondrial subtypes. Biochemical Journal, 1994, 300, 463-468.	3.7	24
132	Effect of cold acclimation on oxidative capacity and respiratory properties of liver and muscle mitochondria in ducklings, Cairina moschata. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1993, 106, 95-101.	0.2	9
133	Effect of 3,3′-di-iodothyronine and 3,5-di-iodothyronine on rat liver mitochondria. Journal of Endocrinology, 1993, 136, 59-64.	2.6	66
134	Effect of 3,3′-diiodothyronine and 3,5-diiodothyronine on rat liver oxidative capacity. Molecular and Cellular Endocrinology, 1992, 86, 143-148.	3.2	58
135	Morphometric-stereologic analysis of brown adipocyte differentiation in adult mice. American Journal of Physiology - Cell Physiology, 1992, 262, C1018-C1023.	4.6	16
136	Liver and brown fat mitochondrial response to cold in the garden dormouse (Eliomys quercinus). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1990, 97, 809-813.	0.2	5
137	Elevated hepatic mitochondrial oxidative capacities in cold exposed rats. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1990, 97, 327-331.	0.2	5
138	The effect of thyroid state on respiratory activities of three rat liver mitochondrial fractions. Molecular and Cellular Endocrinology, 1989, 62, 41-46.	3.2	22
139	Light mitochondria and cellular thermogenesis. Biochemical and Biophysical Research Communications, 1988, 151, 1241-1249.	2.1	39
140	Mitochondrial DNA, RNA and protein synthesis in normal, hypothyroid and mildly hyperthyroid rat liver during cold exposure. Molecular and Cellular Endocrinology, 1988, 55, 141-147.	3.2	23
141	Tri-iodothyronine enhances the formation of light mitochondria during cold exposure. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1986, 85, 869-873.	0.2	5
142	Triiodothyronine receptor sites in serum-free cultured hepatocytes from adult rat liver. Cell Biochemistry and Function, 1985, 3, 91-94.	2.9	8
143	Thyroid state and mitochondrial population during cold exposure. Pflugers Archiv European Journal of Physiology, 1983, 396, 49-53.	2.8	35
144	In vitro binding of triiodothyronine to rat liver mitochondria. Pflugers Archiv European Journal of Physiology, 1981, 390, 120-124.	2.8	61

#	ARTICLE	IF	CITATIONS
145	Thyroid state and mitochondrial population during maturation and ageing. Journal of Endocrinological Investigation, 1980, 3, 293-296.	3.3	13
146	Modification of nucleic acid levels per mitochondrion induced by thyroidectomy or triiodothyronine administration. Pflugers Archiv European Journal of Physiology, 1976, 366, 73-77.	2.8	18