
Karen J Halliday

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7404212/publications.pdf Version: 2024-02-01

KADEN I HALLIDAV

#	Article	IF	CITATIONS
1	PIF7 controls leaf cell proliferation through an AN3 substitution repression mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	8
2	Phytochromes control metabolic flux, and their action at the seedling stage determines adult plant biomass. Journal of Experimental Botany, 2021, 72, 3263-3278.	4.8	6
3	Phytochrome regulates cellular response plasticity and the basic molecular machinery of leaf development. Plant Physiology, 2021, 186, 1220-1239.	4.8	19
4	A photometric stereo-based 3D imaging system using computer vision and deep learning for tracking plant growth. GigaScience, 2019, 8, .	6.4	62
5	Timeâ€resolved interaction proteomics of the <scp>GIGANTEA</scp> protein under diurnal cycles in <i>Arabidopsis</i> . FEBS Letters, 2019, 593, 319-338.	2.8	35
6	Phytochrome, Carbon Sensing, Metabolism, and Plant Growth Plasticity. Plant Physiology, 2018, 176, 1039-1048.	4.8	46
7	Circadian Waves of Transcriptional Repression Shape PIF-Regulated Photoperiod-Responsive Growth in Arabidopsis. Current Biology, 2018, 28, 311-318.e5.	3.9	93
8	Dawn and photoperiod sensing by phytochrome A. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10523-10528.	7.1	34
9	Molecular and genetic control of plant thermomorphogenesis. Nature Plants, 2016, 2, 15190.	9.3	432
10	Photoreceptor effects on plant biomass, resource allocation, and metabolic state. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7667-7672.	7.1	115
11	Defining the robust behaviour of the plant clock gene circuit with absolute RNA timeseries and open infrastructure. Open Biology, 2015, 5, 150042.	3.6	42
12	Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature. Molecular Systems Biology, 2015, 11, 776.	7.2	87
13	Multiscale digital <i>Arabidopsis</i> predicts individual organ and whole-organism growth. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4127-36.	7.1	88
14	The HY5-PIF Regulatory Module Coordinates Light and Temperature Control of Photosynthetic Gene Transcription. PLoS Genetics, 2014, 10, e1004416.	3.5	339
15	Arabidopsis cell expansion is controlled by a photothermal switch. Nature Communications, 2014, 5, 4848.	12.8	63
16	Interaction of light and temperature signalling. Journal of Experimental Botany, 2014, 65, 2859-2871.	4.8	102
17	Mathematical Models Light Up Plant Signaling. Plant Cell, 2014, 26, 5-20.	6.6	41
18	Strengths and Limitations of Period Estimation Methods for Circadian Data. PLoS ONE, 2014, 9, e96462.	2.5	268

KAREN J HALLIDAY

#	Article	IF	CITATIONS
19	Network balance <i>via</i> CRY signalling controls the <i>Arabidopsis</i> circadian clock over ambient temperatures. Molecular Systems Biology, 2013, 9, 650.	7.2	78
20	An augmented Arabidopsis phenology model reveals seasonal temperature control of flowering time. New Phytologist, 2012, 194, 654-665.	7.3	57
21	The clock gene circuit in <i>Arabidopsis</i> includes a repressilator with additional feedback loops. Molecular Systems Biology, 2012, 8, 574.	7.2	386
22	Light receptor action is critical for maintaining plant biomass at warm ambient temperatures. Plant Journal, 2011, 65, 441-452.	5.7	122
23	A stress-free walk from Arabidopsis to crops. Current Opinion in Biotechnology, 2011, 22, 281-286.	6.6	71
24	SPATULA Links Daytime Temperature and Plant Growth Rate. Current Biology, 2010, 20, 1493-1497.	3.9	47
25	Fruit Development: New Directions for an Old Pathway. Current Biology, 2010, 20, R1081-R1083.	3.9	2
26	Integration of Light and Auxin Signaling. Cold Spring Harbor Perspectives in Biology, 2009, 1, a001586-a001586.	5.5	149
27	Prediction of Photoperiodic Regulators from Quantitative Gene Circuit Models. Cell, 2009, 139, 1170-1179.	28.9	111
28	Paths through the phytochrome network. Plant, Cell and Environment, 2008, 31, 667-678.	5.7	34
29	Phytochrome coordinates Arabidopsis shoot and root development. Plant Journal, 2007, 50, 429-438.	5.7	180
30	Plant Hormones: The Interplay of Brassinosteroids and Auxin. Current Biology, 2004, 14, R1008-R1010.	3.9	66
31	Photoreceptors and Associated Signaling I: Phytochromes. , 2004, , 881-884.		0
32	Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integratorFT. Plant Journal, 2003, 33, 875-885.	5.7	274
33	Mutations in the huge Arabidopsis gene BIG affect a range of hormone and light responses. Plant Journal, 2003, 35, 57-70.	5.7	97
34	Phytochromeâ€hormonal signalling networks. New Phytologist, 2003, 157, 449-463.	7.3	108
35	Changes in Photoperiod or Temperature Alter the Functional Relationships between Phytochromes and Reveal Roles for phyD and phyE. Plant Physiology, 2003, 131, 1913-1920.	4.8	122
36	Phytochromes B, D, and E Act Redundantly to Control Multiple Physiological Responses in Arabidopsis. Plant Physiology, 2003, 131, 1340-1346.	4.8	253

KAREN J HALLIDAY

#	Article	IF	CITATIONS
37	Functions and Actions of Arabidopsis Phytochromes. , 2001, , 9-17.		О
38	SRL1: a new locus specific to the phyB-signaling pathway in Arabidopsis. Plant Journal, 2000, 23, 461-470.	5.7	24
39	Overexpression of rice phytochrome A partially complements phytochrome B deficiency in Arabidopsis. Planta, 1999, 207, 401-409.	3.2	14
40	Photomorphogenesis: Phytochrome takes a partner!. Current Biology, 1999, 9, R225-R227.	3.9	9
41	Expression of heterologous phytochromes A, B or C in transgenic tobacco plants alters vegetative development and flowering time. Plant Journal, 1997, 12, 1079-1090.	5.7	67
42	The rosette habit of Arabidopsis thaliana is dependent upon phytochrome action: novel phytochromes control internode elongation and flowering time. Plant Journal, 1996, 10, 1127-1134.	5.7	115
43	Photoreceptor Biotechnology. , 0, , 267-289.		1
44	Photoreceptor Interactions with Other Signals. , 0, , 235-264.		0
45	Photocontrol of Flowering. , 0, , 185-210.		1
46	Red:Far-Red Ratio Perception and Shade Avoidance. , 0, , 211-234.		11