Bram Vrancken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/740417/publications.pdf

Version: 2024-02-01

58 papers

1,879 citations

20 h-index 302126 39 g-index

66 all docs 66 docs citations

66 times ranked 3366 citing authors

#	Article	IF	CITATIONS
1	Reconstruction of the origin and dispersal of the worldwide dominant Hepatitis B Virus subgenotype D1. Virus Evolution, 2022, 8 , .	4.9	4
2	Extensive characterization of HIV-1 reservoirs reveals links to plasma viremia before and during analytical treatment interruption. Cell Reports, 2022, 39, 110739.	6.4	15
3	Archival influenza virus genomes from Europe reveal genomic variability during the 1918 pandemic. Nature Communications, 2022, 13, 2314.	12.8	25
4	Dynamics and Dispersal of Local Human Immunodeficiency Virus Epidemics Within San Diego and Across the San Diego–Tijuana Border. Clinical Infectious Diseases, 2021, 73, e2018-e2025.	5.8	19
5	Molecular detection and genomic characterization of diverse hepaciviruses in African rodents. Virus Evolution, 2021, 7, veab036.	4.9	11
6	A paucigranulocytic asthma host environment promotes the emergence of virulent influenza viral variants. ELife, $2021,10,10$	6.0	5
7	Dispersal dynamics of SARS-CoV-2 lineages during the first epidemic wave in New York City. PLoS Pathogens, 2021, 17, e1009571.	4.7	24
8	A Comprehensive Molecular Epidemiological Analysis of SARS-CoV-2 Infection in Cyprus from April 2020 to January 2021: Evidence of a Highly Polyphyletic and Evolving Epidemic. Viruses, 2021, 13, 1098.	3.3	11
9	<i>In Vivo</i> Therapy with M2e-Specific IgG Selects for an Influenza A Virus Mutant with Delayed Matrix Protein 2 Expression. MBio, 2021, 12, e0074521.	4.1	4
10	Assessing the impact of COVID-19 border restrictions on dengue transmission in Yunnan Province, China: an observational epidemiological and phylogenetic analysis. The Lancet Regional Health - Western Pacific, 2021, 14, 100259.	2.9	11
11	Phylogenomic Characterization of Lopma Virus and Praja Virus, Two Novel Rodent-Borne Arteriviruses. Viruses, 2021, 13, 1842.	3.3	4
12	Epidemiological hypothesis testing using a phylogeographic and phylodynamic framework. Nature Communications, 2020, $11,5620$.	12.8	35
13	Comparative Circulation Dynamics of the Five Main HIV Types in China. Journal of Virology, 2020, 94, .	3.4	26
14	Measles virus and rinderpest virus divergence dated to the sixth century BCE. Science, 2020, 368, 1367-1370.	12.6	102
15	Accounting for population structure reveals ambiguity in the Zaire Ebolavirus reservoir dynamics. PLoS Neglected Tropical Diseases, 2020, 14, e0008117.	3.0	8
16	In Search of Covariates of HIV-1 Subtype B Spread in the United States—A Cautionary Tale of Large-Scale Bayesian Phylogeography. Viruses, 2020, 12, 182.	3.3	15
17	Evaluating predictive markers for viral rebound and safety assessment in blood and lumbar fluid during HIV-1 treatment interruption. Journal of Antimicrobial Chemotherapy, 2020, 75, 1311-1320.	3.0	15
18	HIV persists throughout deep tissues with repopulation from multiple anatomical sources. Journal of Clinical Investigation, 2020, 130, 1699-1712.	8.2	140

#	Article	IF	CITATIONS
19	Genomic Epidemiology of 2015–2016 Zika Virus Outbreak in Cape Verde. Emerging Infectious Diseases, 2020, 26, 1084-1090.	4.3	24
20	Comparing patterns and scales of plant virus phylogeography: Rice yellow mottle virus in Madagascar and in continental Africa. Virus Evolution, 2019, 5, vez023.	4.9	22
21	Cross-country migration linked to people who inject drugs challenges the long-term impact of national HCV elimination programmes. Journal of Hepatology, 2019, 71, 1270-1272.	3.7	7
22	A4â \in fAn amplicon-based approach for universal amplification, sequencing, and assembly of full-length HIV-1 samples from the DRC. Virus Evolution, 2019, 5, .	4.9	0
23	Identifying the patterns and drivers of Puumala hantavirus enzootic dynamics using reservoir sampling. Virus Evolution, 2019, 5, vez009.	4.9	16
24	HIV Rebound Is Predominantly Fueled by Genetically Identical Viral Expansions from Diverse Reservoirs. Cell Host and Microbe, 2019, 26, 347-358.e7.	11.0	117
25	Divergence dating using mixed effects clock modelling: An application to HIV-1. Virus Evolution, 2019, 5, vez036.	4.9	24
26	Drivers of HIV-1 transmission: The Portuguese case. PLoS ONE, 2019, 14, e0218226.	2.5	12
27	New evidence for the east–west spread of the highly pathogenic avian influenza H5N1 virus between Central Asian and east Asian-Australasian flyways in China. Emerging Microbes and Infections, 2019, 8, 823-826.	6.5	11
28	Disentangling the role of Africa in the global spread of H5 highly pathogenic avian influenza. Nature Communications, 2019, 10, 5310.	12.8	61
29	Limited evolution of the yellow fever virus 17d in a mouse infection model. Emerging Microbes and Infections, 2019, 8, 1734-1746.	6.5	18
30	Global origins of African highly pathogenic avian influenza H5Nx viruses and intracontinental spread. International Journal of Infectious Diseases, 2019, 79, 9-10.	3.3	2
31	Increasing importance of European lineages in seeding the hepatitis C virus subtype 1a epidemic in Spain. Eurosurveillance, 2019, 24, .	7.0	14
32	Proposal for a new subtype of the zoonotic genotype 3 Hepatitis E virus: HEV-3l. Virus Research, 2018, 248, 1-4.	2.2	21
33	Transmission dynamics of re-emerging rabies in domestic dogs of rural China. PLoS Pathogens, 2018, 14, e1007392.	4.7	35
34	Recent advances in computational phylodynamics. Current Opinion in Virology, 2018, 31, 24-32.	5.4	45
35	Discovery and genome characterization of three new Jeilongviruses, a lineage of paramyxoviruses characterized by their unique membrane proteins. BMC Genomics, 2018, 19, 617.	2.8	35
36	Inferring the migration routes of hepatitis C virus subtype 1a lineages identifies a need for pan-European prevention strategies. Journal of Hepatology, 2018, 68, S158-S159.	3.7	0

#	Article	IF	Citations
37	Why comprehensive datasets matter when inferring epidemic links or subgenotyping. Infection, Genetics and Evolution, 2018, 65, 350-351.	2.3	4
38	On the importance of negative controls in viral landscape phylogeography. Virus Evolution, 2018, 4, vey023.	4.9	29
39	The multi-faceted dynamics of HIV-1 transmission in Northern Alberta: A combined analysis of virus genetic and public health data. Infection, Genetics and Evolution, 2017, 52, 100-105.	2.3	24
40	The epidemic dynamics of hepatitis C virus subtypes 4a and 4d in Saudi Arabia. Scientific Reports, 2017, 7, 44947.	3.3	22
41	Implications of hepatitis C virus subtype 1a migration patterns for virus genetic sequencing policies in Italy. BMC Evolutionary Biology, 2017, 17, 70.	3.2	21
42	Cross-border spread, lineage displacement and evolutionary rate estimation of rabies virus in Yunnan Province, China. Virology Journal, 2017, 14, 102.	3.4	24
43	Accurate quantification of within- and between-host HBV evolutionary rates requires explicit transmission chain modelling. Virus Evolution, 2017, 3, vex028.	4.9	16
44	A18†fRandom amplification with next-generation sequencing to cover HIV and HCV full-length genomes. Virus Evolution, 2017, 3, .	4.9	1
45	Phylogenetic relationships of the HA and NA genes between vaccine and seasonal influenza A(H3N2) strains in Korea. PLoS ONE, 2017, 12, e0172059.	2.5	10
46	Quantifying Next Generation Sequencing Sample Pre-Processing Bias in HIV-1 Complete Genome Sequencing. Viruses, 2016, 8, 12.	3.3	13
47	Detection of Natural Resistance-Associated Substitutions by Ion Semiconductor Technology in HCV1b Positive, Direct-Acting Antiviral Agents-NaÃ-ve Patients. International Journal of Molecular Sciences, 2016, 17, 1416.	4.1	14
48	SpreaD3: Interactive Visualization of Spatiotemporal History and Trait Evolutionary Processes. Molecular Biology and Evolution, 2016, 33, 2167-2169.	8.9	413
49	Distinct Effects of T-705 (Favipiravir) and Ribavirin on Influenza Virus Replication and Viral RNA Synthesis. Antimicrobial Agents and Chemotherapy, 2016, 60, 6679-6691.	3.2	86
50	Simultaneously estimating evolutionary history and repeated traits phylogenetic signal: applications to viral and host phenotypic evolution. Methods in Ecology and Evolution, 2015, 6, 67-82.	5.2	22
51	Disentangling the impact of within-host evolution and transmission dynamics on the tempo of HIV-1 evolution. Aids, 2015, 29, 1549-1556.	2.2	16
52	Host ecology determines the dispersal patterns of a plant virus. Virus Evolution, 2015, 1, vev016.	4.9	59
53	Contribution of Epidemiological Predictors in Unraveling the Phylogeographic History of HIV-1 Subtype C in Brazil. Journal of Virology, 2015, 89, 12341-12348.	3.4	28
54	The Genealogical Population Dynamics of HIV-1 in a Large Transmission Chain: Bridging within and among Host Evolutionary Rates. PLoS Computational Biology, 2014, 10, e1003505.	3.2	79

#	Article	IF	CITATIONS
55	A near-full length genotypic assay for HCV1b. Journal of Virological Methods, 2014, 209, 126-135.	2.1	11
56	HIV-1 evolution in patients undergoing immunotherapy with Tat, Rev, and Nef expressing dendritic cells followed by treatment interruption. Aids, 2013, 27, 2679-2689.	2.2	7
57	High-throughput HIV sequencing: evolution in 2D. Future Virology, 2011, 6, 417-420.	1.8	1
58	Covering all bases in HIV research: unveiling a hidden world of viral evolution. AIDS Reviews, 2010, 12, 89-102.	1.0	23