
Sébastien Lecommandoux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7403642/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toward â€~smart' nano-objects by self-assembly of block copolymers in solution. Progress in Polymer Science, 2005, 30, 691-724.	24.7	748
2	Supramolecular Materials via Block Copolymer Self-Assembly. Advanced Materials, 2001, 13, 1217.	21.0	744
3	Reversible Insideâ^'Out Micellization of pH-responsive and Water-Soluble Vesicles Based on Polypeptide Diblock Copolymers. Journal of the American Chemical Society, 2005, 127, 2026-2027.	13.7	656
4	Magnetic responsive polymer composite materials. Chemical Society Reviews, 2013, 42, 7099.	38.1	499
5	Cascade Reactions in Multicompartmentalized Polymersomes. Angewandte Chemie - International Edition, 2014, 53, 146-150.	13.8	463
6	Multicompartmentalized polymeric systems: towards biomimetic cellular structure and function. Chemical Society Reviews, 2013, 42, 512-529.	38.1	445
7	Doxorubicin Loaded Magnetic Polymersomes: Theranostic Nanocarriers for MR Imaging and Magneto-Chemotherapy. ACS Nano, 2011, 5, 1122-1140.	14.6	441
8	Water-Soluble Stimuli-Responsive Vesicles from Peptide-Based Diblock Copolymers. Angewandte Chemie - International Edition, 2002, 41, 1339-1343.	13.8	377
9	A simple method to achieve high doxorubicin loading in biodegradable polymersomes. Journal of Controlled Release, 2010, 147, 428-435.	9.9	317
10	The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly(γ-benzyl) Tj ETQq0 0 0 rgBT /Ov	verlock 10 11.4) Tf 50 382 Td 310
11	Self-assembly of polypeptide-based block copolymer amphiphiles. Current Opinion in Colloid and Interface Science, 2009, 14, 329-339.	7.4	272
12	Self-Assembly of Peptide-Based Diblock Oligomers. Macromolecules, 2000, 33, 7819-7826.	4.8	269
13	Magnetic field triggered drug release from polymersomes for cancer therapeutics. Journal of Controlled Release, 2013, 169, 165-170.	9.9	267
14	Polysaccharideâ€ <i>block</i> â€polypeptide Copolymer Vesicles: Towards Synthetic Viral Capsids. Angewandte Chemie - International Edition, 2009, 48, 2572-2575.	13.8	266
15	Biologically Active Polymersomes from Amphiphilic Glycopeptides. Journal of the American Chemical Society, 2012, 134, 119-122.	13.7	222
16	Biomimetic Doxorubicin Loaded Polymersomes from Hyaluronan- <i>block</i> -Poly(γ-benzyl glutamate) Copolymers. Biomacromolecules, 2009, 10, 2802-2808.	5.4	195
17	Recent trends in the tuning of polymersomes' membrane properties. European Physical Journal E, 2011, 34, 14.	1.6	195
18	Self-Assembly of Rodâ^'Coil Diblock Oligomers Based on α-Helical Peptides. Macromolecules, 2001, 34, 9100-9111.	4.8	193

#	Article	IF	CITATIONS
19	Hybrid polymer/lipid vesicles: state of the art and future perspectives. Materials Today, 2013, 16, 397-402.	14.2	187
20	A Versatile Synthetic Approach to Polypeptide Based Rodâ^'Coil Block Copolymers by Click Chemistry. Macromolecules, 2007, 40, 5653-5661.	4.8	182
21	Structure of Polypeptide-Based Diblock Copolymers in Solution:Â Stimuli-Responsive Vesicles and Micelles. Langmuir, 2005, 21, 4308-4315.	3.5	178
22	Magnetic Nanocomposite Micelles and Vesicles. Advanced Materials, 2005, 17, 712-718.	21.0	170
23	pH and Temperature Responsive Polymeric Micelles and Polymersomes by Self-Assembly of Poly[2-(dimethylamino)ethyl methacrylate]- <i>b</i> Poly(glutamic acid) Double Hydrophilic Block Copolymers. Langmuir, 2010, 26, 10546-10554.	3.5	166
24	Biocompatible and Biodegradable Poly(trimethylene carbonate)- <i>b</i> -Poly(<scp>l</scp> -glutamic) Tj ETQq0	0 0 _{3'} gBT /(Overlock 10 Ti 162
25	From supramolecular polymersomes to stimuli-responsive nano-capsules based on poly(diene-b-peptide) diblock copolymers. European Physical Journal E, 2003, 10, 25-35.	1.6	153
26	Polysaccharide ontaining Block Copolymers: Synthesis, Properties and Applications of an Emerging Family of Glycoconjugates. Macromolecular Rapid Communications, 2010, 31, 1664-1684.	3.9	147
27	Polymersomes in Polymersomes: Multiple Loading and Permeability Control. Angewandte Chemie - International Edition, 2012, 51, 1173-1176.	13.8	139
28	Selfâ€Assembly of Thermally Responsive Amphiphilic Diblock Copolypeptides into Spherical Micellar Nanoparticles. Angewandte Chemie - International Edition, 2010, 49, 4257-4260.	13.8	136
29	Effect of Dense Grafting on the Backbone Conformation of Bottlebrush Polymers:Â Determination of the Persistence Length in Solution. Macromolecules, 2002, 35, 8878-8881.	4.8	133
30	Aqueous Ringâ€Opening Polymerizationâ€Induced Selfâ€Assembly (ROPISA) of Nâ€Carboxyanhydrides. Angewandte Chemie - International Edition, 2020, 59, 622-626.	13.8	129
31	Hybrid polymer/lipid vesicles: fine control of the lipid and polymer distribution in the binary membrane. Soft Matter, 2012, 8, 2867.	2.7	115
32	Solid-State Structure, Organizationand Properties of Peptide—Synthetic Hybrid Block Copolymers. , 0, , 75-111.		108
33	Lipids and polymers in pharmaceutical technology: Lifelong companions. International Journal of Pharmaceutics, 2019, 558, 128-142.	5.2	101
34	Synthesis and Self-Assembly Properties of Peptideâ^'Polylactide Block Copolymers. Macromolecules, 2003, 36, 1118-1124.	4.8	99
35	Mastering a Double Emulsion in a Simple Co-Flow Microfluidic to Generate Complex Polymersomes. Langmuir, 2011, 27, 9034-9042.	3.5	98
36	Thermoresponsive polymer brush-functionalized magnetic manganite nanoparticles for remotely triggered drug release. Polymer Chemistry, 2012, 3, 1408.	3.9	98

#	Article	IF	CITATIONS
37	Self-assembled nanostructures from peptide–synthetic hybrid block copolymers: Complex, stimuli-responsive rod–coil architectures. Faraday Discussions, 2005, 128, 179-192.	3.2	97
38	Polymersome Shape Transformation at the Nanoscale. ACS Nano, 2013, 7, 9298-9311.	14.6	96
39	pH-responsive micelles and vesicles nanocapsules based on polypeptide diblock copolymers. New Biotechnology, 2007, 24, 81-85.	2.7	93
40	Micelle Density Regulated by a Reversible Switch of Protein Secondary Structure. Journal of the American Chemical Society, 2006, 128, 12014-12019.	13.7	92
41	Synthetic Glycopolypeptides as Biomimetic Analogues of Natural Glycoproteins. Biomacromolecules, 2013, 14, 2973-2983.	5.4	92
42	Micelles and Polymersomes Obtained by Self-Assembly of Dextran and Polystyrene Based Block Copolymers. Biomacromolecules, 2009, 10, 32-40.	5.4	89
43	Synthesis and Self-Assembly in Bulk of Linear and Mikto-Arm Star Block Copolymers Based on Polystyrene and Poly(glutamic acid). Macromolecules, 2008, 41, 1384-1392.	4.8	85
44	Antibodyâ€Functionalized Magnetic Polymersomes: In vivo Targeting and Imaging of Bone Metastases using High Resolution MRI. Advanced Healthcare Materials, 2013, 2, 1420-1424.	7.6	84
45	The in vivo behavior and antitumor activity of doxorubicin-loaded poly(γ-benzyl) Tj ETQq1 1 0.784314 rgBT /Overl Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 71-80.	lock 10 Tf 3.3	50 427 Tcl (80
46	Preparation of Shell Cross-Linked Nano-Objects from Hybrid-Peptide Block Copolymers. Biomacromolecules, 2005, 6, 2213-2220.	5.4	79
47	Manganite perovskite nanoparticles for self-controlled magnetic fluid hyperthermia: about the suitability of an aqueous combustion synthesis route. Journal of Materials Chemistry, 2011, 21, 4393.	6.7	77
48	Iminosugar-based glycopolypeptides: glycosidase inhibition with bioinspired glycoprotein analogue micellar self-assemblies. Chemical Communications, 2014, 50, 3350-3352.	4.1	75
49	Biodegradable Polycarbonate-b-polypeptide and Polyester-b-polypeptide Block Copolymers: Synthesis and Nanoparticle Formation Towards Biomaterials. Biomacromolecules, 2008, 9, 1924-1933.	5.4	74
50	Controllable Microfluidic Production of Drug-Loaded PLGA Nanoparticles Using Partially Water-Miscible Mixed Solvent Microdroplets as a Precursor. Scientific Reports, 2017, 7, 4794.	3.3	74
51	Polymersome Popping by Lightâ€Induced Osmotic Shock under Temporal, Spatial, and Spectral Control. Angewandte Chemie - International Edition, 2017, 56, 1566-1570.	13.8	71
52	In vitro and In vivo Evaluation of Docetaxel Loaded Biodegradable Polymersomes. Macromolecular Bioscience, 2010, 10, 503-512.	4.1	70
53	Temperature responsive poly(trimethylene carbonate)-block-poly(l-glutamic acid) copolymer: polymersomes fusion and fission. Soft Matter, 2010, 6, 1722.	2.7	70
54	Photo-triggered polymer nanomedicines: From molecular mechanisms to therapeutic applications. Advanced Drug Delivery Reviews, 2019, 138, 148-166.	13.7	69

#	Article	IF	CITATIONS
55	Thermoresponsive Micelles from Jeffamine- <i>b</i> -poly(<scp>l</scp> -glutamic acid) Double Hydrophilic Block Copolymers. Langmuir, 2007, 23, 11526-11533.	3.5	68
56	Polymersomes in "Gelly―Polymersomes: Toward Structural Cell Mimicry. Langmuir, 2012, 28, 2035-2043.	3.5	68
57	Smart polymersomes for therapy and diagnosis: fast progress toward multifunctional biomimetic nanomedicines. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2012, 4, 525-546.	6.1	68
58	Synthesis and self-assembly of "tree-like―amphiphilic glycopolypeptides. Chemical Communications, 2012, 48, 8353.	4.1	64
59	Towards an easy access to amphiphilic rod-coil miktoarm star copolymers. Chemical Communications, 2005, , 1993.	4.1	63
60	Enzyme-Degradable Self-Assembled Nanostructures from Polymer–Peptide Hybrids. Biomacromolecules, 2014, 15, 1882-1888.	5.4	63
61	Anti-tumor efficacy of hyaluronan-based nanoparticles for the co-delivery of drugs in lung cancer. Journal of Controlled Release, 2018, 275, 117-128.	9.9	63
62	Block Copolymer Vesicle Permeability Measured by Osmotic Swelling and Shrinking. Langmuir, 2011, 27, 4884-4890.	3.5	61
63	Visualization of lipids and proteins at high spatial and temporal resolution via interferometric scattering (iSCAT) microscopy. Journal Physics D: Applied Physics, 2016, 49, 274002.	2.8	58
64	Hybrid iron oxide-copolymer micelles and vesicles as contrast agents for MRI: impact of the nanostructure on the relaxometric properties. Journal of Materials Chemistry B, 2013, 1, 5317.	5.8	56
65	Synthesis of Block Copolypeptides by Click Chemistry. Macromolecular Rapid Communications, 2008, 29, 1147-1155.	3.9	54
66	Monocore <i>vs.</i> multicore magnetic iron oxide nanoparticles: uptake by glioblastoma cells and efficiency for magnetic hyperthermia. Molecular Systems Design and Engineering, 2017, 2, 629-639.	3.4	54
67	A progesterone biosensor derived from microbial screening. Nature Communications, 2020, 11, 1276.	12.8	53
68	Dynamic Spatial Formation and Distribution of Intrinsically Disordered Protein Droplets in Macromolecularly Crowded Protocells. Angewandte Chemie - International Edition, 2020, 59, 11028-11036.	13.8	53
69	Microphase Separation of Linear and Cyclic Block Copolymers Poly(styrene-b-isoprene):  SAXS Experiments. Macromolecules, 2004, 37, 1843-1848.	4.8	52
70	Synthesis and self-assembly of polythiophene-based rod–coil and coil–rod–coil block copolymers. Journal of Materials Chemistry, 2005, 15, 3264.	6.7	50
71	Polypeptide Nanoparticles Obtained from Emulsion Polymerization of Amino Acid <i>N</i> -Carboxyanhydrides. Journal of the American Chemical Society, 2019, 141, 12522-12526.	13.7	50
72	Quantitative Side-Chain Modifications of Methionine-Containing Elastin-Like Polypeptides as a Versatile Tool to Tune Their Properties. ACS Macro Letters, 2015, 4, 1283-1286.	4.8	49

#	Article	IF	CITATIONS
73	Multivalent effect of glycopolypeptide based nanoparticles for galectin binding. Chemical Communications, 2016, 52, 11251-11254.	4.1	49
74	Selective Tuning of Elastin-like Polypeptide Properties via Methionine Oxidation. Biomacromolecules, 2017, 18, 544-550.	5.4	49
75	Small-Angle Neutron Scattering from Diblock Copolymer Poly(styrene-d8)-b-poly(γ-benzyll-glutamate) Solutions:Â Rodâ^'Coil to Coilâ 'Coil Transition. Macromolecules, 2003, 36, 1253-1256.	4.8	47
76	Controlled Release of Volatile Fragrance Molecules from PEO- <i>b</i> -PPO- <i>b</i> -PEO Block Copolymer Micelles in Ethanolâ^Water Mixtures. Langmuir, 2010, 26, 7953-7961.	3.5	47
77	Nano-thermometers with thermo-sensitive polymer grafted USPIOs behaving as positive contrast agents in low-field MRI. Nanoscale, 2015, 7, 3754-3767.	5.6	47
78	Liposomes in Polymersomes: Multicompartment System with Temperature-Triggered Release. Langmuir, 2017, 33, 7079-7085.	3.5	47
79	Diblock copolymer stabilization of multi-wall carbon nanotubes in organic solvents and their use in composites. Carbon, 2006, 44, 3207-3212.	10.3	46
80	Crystallisation-driven self-assembly of poly(2-isopropyl-2-oxazoline)-block-poly(2-methyl-2-oxazoline) above the LCST. Soft Matter, 2015, 11, 3354-3359.	2.7	46
81	pH and redox responsive hydrogels and nanogels made from poly(2-ethyl-2-oxazoline). Polymer Chemistry, 2013, 4, 4801.	3.9	45
82	Targeting CD44 receptor-positive lung tumors using polysaccharide-based nanocarriers: Influence of nanoparticle size and administration route. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 921-932.	3.3	45
83	Asymmetric Hybrid Polymer–Lipid Giant Vesicles as Cell Membrane Mimics. Advanced Science, 2018, 5, 1700453.	11.2	45
84	Role of Block Copolymer Nanoconstructs in Cancer Therapy. Critical Reviews in Therapeutic Drug Carrier Systems, 2009, 26, 157-205.	2.2	45
85	Smart hybrid magnetic self-assembled micelles and hollow capsules. Progress in Solid State Chemistry, 2006, 34, 171-179.	7.2	44
86	Towards Bioactive Nanovehicles Based on Protein Polymers. Angewandte Chemie - International Edition, 2012, 51, 3060-3062.	13.8	44
87	Design of Polysaccharide- <i>b</i> -Elastin-Like Polypeptide Bioconjugates and Their Thermoresponsive Self-Assembly. Biomacromolecules, 2020, 21, 114-125.	5.4	43
88	Scattering Properties of Rodâ^'Coil and Once-Broken Rod Block Copolymers. Macromolecules, 2001, 34, 4229-4234.	4.8	42
89	Synthesis and self-organization of rod-dendron and dendron-rod-dendron molecules. Journal of Polymer Science Part A, 2003, 41, 3501-3518.	2.3	42
90	X-ray diffraction study of â€~side-on fixed' homopolysiloxanes from nematic to smectic C phases. Liquid Crystals, 1995, 19, 581-587.	2.2	41

#	Article	IF	CITATIONS
91	Macromol. Biosci. 5/2010. Macromolecular Bioscience, 2010, 10, .	4.1	41
92	Water-Soluble Stimuli-Responsive Vesicles from Peptide-Based Diblock Copolymers Financial support by the CNRS, MENRT, DAAD, Fonds der Chemischen Industrie, and the Deutsche Forschungsgemeinschaft (Emmy Noether Programm, KL1049/2) is gratefully acknowledged. S.L. and HA.K. are grateful to Dr. R. Borsali and Prof. K. Müllen, respectively, for their interest and support Angewandte Chemie, 2002, 114, 1395.	2.0	40
93	Tuning Thermoresponsive Properties of Cationic Elastin-like Polypeptides by Varying Counterions and Side-Chains. Bioconjugate Chemistry, 2017, 28, 1403-1412.	3.6	40
94	Development of a cell-free and growth factor-free hydrogel capable of inducing angiogenesis and innervation after subcutaneous implantation. Acta Biomaterialia, 2019, 99, 154-167.	8.3	40
95	Cyclic Poly(α-peptoid)s by Lithium bis(trimethylsilyl)amide (LiHMDS)-Mediated Ring-Expansion Polymerization: Simple Access to Bioactive Backbones. Journal of the American Chemical Society, 2021, 143, 3697-3702.	13.7	37
96	Synthesis and selfâ€assembly in water of coilâ€rodâ€coil amphiphilic block copolymers with central Ï€â€conjugated sequence. Journal of Polymer Science Part A, 2008, 46, 4602-4616.	2.3	35
97	Experimental and theoretical evaluation of nanodiamonds as pH triggered drug carriers. New Journal of Chemistry, 2012, 36, 1479.	2.8	34
98	Aldehyde-functional copolymers based on poly(2-oxazoline) for post-polymerization modification. European Polymer Journal, 2015, 62, 322-330.	5.4	34
99	Multivalent and multifunctional polysaccharide-based particles for controlled receptor recognition. Scientific Reports, 2018, 8, 14730.	3.3	34
100	Functionalization of Alkyne-Terminated Thermally Hydrocarbonized Porous Silicon Nanoparticles With Targeting Peptides and Antifouling Polymers: Effect on the Human Plasma Protein Adsorption. ACS Applied Materials & Interfaces, 2015, 7, 2006-2015.	8.0	33
101	Structural Evolution of a Stimulus-Responsive Diblock Polypeptide Micelle by Temperature Tunable Compaction of its Core. Macromolecules, 2015, 48, 6617-6627.	4.8	33
102	A physico-chemical investigation of poly(ethylene oxide)-block-poly(l-lysine) copolymer adsorption onto silica nanoparticles. Journal of Colloid and Interface Science, 2011, 359, 413-422.	9.4	32
103	Self-assemblies of magnetic nanoparticles and di-block copolymers: Magnetic micelles and vesicles. Journal of Magnetism and Magnetic Materials, 2006, 300, 71-74.	2.3	31
104	Control of the PEO Chain Conformation on Nanoparticles by Adsorption of PEO- <i>block</i> -Poly(<scp>l</scp> -lysine) Copolymers and Its Significance on Colloidal Stability and Protein Repellency. Langmuir, 2011, 27, 12891-12901.	3.5	31
105	Photosensitizer localization in amphiphilic block copolymers controls photodynamic therapy efficacy. Nanoscale, 2017, 9, 11180-11186.	5.6	30
106	Are nematic side-on polymers totally extended? A SANS study. Liquid Crystals, 1997, 22, 549-555.	2.2	29
107	Toward a new lower limit for the minimum scattering vector on the very small angle neutron scattering spectrometer at Laboratoire Léon Brillouin. Journal of Applied Crystallography, 2008, 41, 161-166.	4.5	29
108	Encapsidation of RNA–Polyelectrolyte Complexes with Amphiphilic Block Copolymers: Toward a New Self-Assembly Route. Journal of the American Chemical Society, 2012, 134, 20189-20196.	13.7	29

#	Article	IF	CITATIONS
109	Tailored drug-release from multi-functional polymer-peptide hybrid vesicles. European Polymer Journal, 2015, 62, 363-373.	5.4	27
110	Hydrogel-Embedded Quantum Dot–Transcription Factor Sensors for Quantitative Progesterone Detection. ACS Applied Materials & Interfaces, 2020, 12, 43513-43521.	8.0	27
111	Aqueous ROPISA of α-amino acid <i>N</i> -carboxyanhydrides: polypeptide block secondary structure controls nanoparticle shape anisotropy. Polymer Chemistry, 2021, 12, 6242-6251.	3.9	27
112	Aqueous Ringâ€Opening Polymerizationâ€Induced Selfâ€Assembly (ROPISA) of Nâ€Carboxyanhydrides. Angewandte Chemie, 2020, 132, 632-636.	2.0	26
113	Self-Assembly of PEG- <i>b</i> -PTMC Copolymers: Micelles and Polymersomes Size Control. Langmuir, 2019, 35, 13364-13374.	3.5	25
114	Production, purification and characterization of an elastin-like polypeptide containing the Ile-Lys-Val-Ala-Val (IKVAV) peptide for tissue engineering applications. Journal of Biotechnology, 2019, 298, 35-44.	3.8	25
115	Side-on fixed polysiloxanes and 'diluted' copolysiloxanes with nematic and smectic C phases. Liquid Crystals, 1998, 25, 85-94.	2.2	24
116	Poly(2-oxazoline)-Based Nanogels as Biocompatible Pseudopolypeptide Nanoparticles. Biomacromolecules, 2015, 16, 183-191.	5.4	24
117	Smart metallopoly(<scp> </scp> -glutamic acid) polymers: reversible helix-to-coil transition at neutral pH. RSC Advances, 2016, 6, 84694-84697.	3.6	24
118	Characterisation of hydration and nanophase separation during the temperature response in hydrophobic/hydrophilic elastin-like polypeptide (ELP) diblock copolymers. Soft Matter, 2017, 13, 1816-1822.	2.7	24
119	Thermosensitive Vesicles from Chemically Encoded Lipidâ€Grafted Elastinâ€like Polypeptides. Angewandte Chemie - International Edition, 2021, 60, 15036-15040.	13.8	24
120	Smectic C Structure and Backbone Confinement in Side-on Fixed Liquid Crystalline Polymers. Macromolecules, 2000, 33, 67-72.	4.8	23
121	Synthesis and self-assembly of branched glycopolypeptides: effect of topology and conformation. Faraday Discussions, 2013, 166, 137.	3.2	23
122	Thermosensitive polymer-grafted iron oxide nanoparticles studied by <i>in situ</i> dynamic light backscattering under magnetic hyperthermia. Journal Physics D: Applied Physics, 2015, 48, 494001.	2.8	23
123	Recombinant production and purification of short hydrophobic Elastin-like polypeptides with low transition temperatures. Protein Expression and Purification, 2016, 121, 81-87.	1.3	23
124	A thioglycerol route to bio-based bis-cyclic carbonates: poly(hydroxyurethane) preparation and post-functionalization. Polymer Chemistry, 2017, 8, 3438-3447.	3.9	23
125	Design and self-assembly of PBLG- <i>b</i> -ELP hybrid diblock copolymers based on synthetic and elastin-like polypeptides. Organic and Biomolecular Chemistry, 2017, 15, 10095-10104.	2.8	23
126	Thermosensitive Hybrid Elastin-like Polypeptide-Based ABC Triblock Hydrogel. Macromolecules, 2021, 54, 327-340.	4.8	23

#	Article	IF	CITATIONS
127	Synthesis of Calibrated Poly(3,4-ethylenedioxythiophene) Latexes in Aqueous Dispersant Media. Langmuir, 2008, 24, 11911-11920.	3.5	22
128	Depletion induced vesicle-to-micelle transition from self-assembled rod–coil diblock copolymers with spherical magnetic nanoparticles. Soft Matter, 2011, 7, 9744.	2.7	22
129	Droplet Microfluidics to Prepare Magnetic Polymer Vesicles and to Confine the Heat in Magnetic Hyperthermia. IEEE Transactions on Magnetics, 2013, 49, 182-190.	2.1	22
130	Boundary lubricant films under shear: Effect of roughness and adhesion. Journal of Chemical Physics, 2007, 126, 184906.	3.0	21
131	Combining sol–gel chemistry and millifluidic toward engineering microporous silica ceramic final sizes and shapes: An Integrative Chemistry approach. Chemical Engineering and Processing: Process Intensification, 2008, 47, 1317-1322.	3.6	21
132	Nano-Encapsulation of Plitidepsin: In Vivo Pharmacokinetics, Biodistribution, and Efficacy in a Renal Xenograft Tumor Model. Pharmaceutical Research, 2014, 31, 983-991.	3.5	21
133	Amphiphilic PEOâ€ <i>b</i> â€PBLG Diblock and PBLGâ€ <i>b</i> â€PEOâ€ <i>b</i> â€PEOâ€ <i>b</i> â€PBLG Triblock Copolymer Bas Nanoparticles: Doxorubicin Loading and <i>In Vitro</i> Evaluation. Macromolecular Bioscience, 2015, 15, 124-137.	ed 4.1	21
134	Multifunctional Stimuli-Responsive Cellulose Nanocrystals via Dual Surface Modification with Genetically Engineered Elastin-Like Polypeptides and Poly(acrylic acid). ACS Macro Letters, 2018, 7, 646-650.	4.8	21
135	Spatiotemporal Dynamic Assembly/Disassembly of Organelleâ€Mimics Based on Intrinsically Disordered Proteinâ€Polymer Conjugates. Advanced Science, 2021, 8, e2102508.	11.2	21
136	Avidin Localizations in pH-Responsive Polymersomes for Probing the Docking of Biotinylated (Macro)molecules in the Membrane and Lumen. Biomacromolecules, 2020, 21, 5162-5172.	5.4	20
137	Design of Thermoresponsive Elastin-Like Glycopolypeptides for Selective Lectin Binding and Sorting. Biomacromolecules, 2021, 22, 76-85.	5.4	20
138	Responsive micelles and vesicles based on polypeptide diblock copolymers. Polymers for Advanced Technologies, 2006, 17, 782-785.	3.2	19
139	ADMET polymerization of α,ω-unsaturated glycolipids: synthesis and physico-chemical properties of the resulting polymers. Polymer Chemistry, 2017, 8, 3731-3739.	3.9	19
140	Nanoparticles based on natural, engineered or synthetic proteins and polypeptides for drug delivery applications. International Journal of Pharmaceutics, 2020, 586, 119537.	5.2	19
141	Dynamic Spatial Formation and Distribution of Intrinsically Disordered Protein Droplets in Macromolecularly Crowded Protocells. Angewandte Chemie, 2020, 132, 11121-11129.	2.0	19
142	Polymersome Popping by Lightâ€Induced Osmotic Shock under Temporal, Spatial, and Spectral Control. Angewandte Chemie, 2017, 129, 1588-1592.	2.0	18
143	Expanding the Toolbox of Chemoselective Modifications of Protein-Like Polymers at Methionine Residues. ACS Macro Letters, 2019, 8, 1648-1653.	4.8	18
144	Self-Assembly of Stimuli-Responsive Biohybrid Synthetic- <i>b</i> -Recombinant Block Copolypeptides. Biomacromolecules, 2019, 20, 254-272.	5.4	17

#	Article	IF	CITATIONS
145	Synthetic glycopolypeptides: synthesis and self-assembly of poly(γ-benzyl- <scp>l</scp> -glutamate)-glycosylated dendron hybrids. Polymer Chemistry, 2015, 6, 7902-7912.	3.9	16
146	Versatile design of amphiphilic glycopolypeptides nanoparticles for lectin recognition. Polymer, 2016, 107, 474-484.	3.8	16
147	Preparation and Properties of Asymmetric Synthetic Membranes Based on Lipid and Polymer Self-Assembly. Langmuir, 2018, 34, 3376-3385.	3.5	16
148	Elastin-like Polypeptide-Based Bioink: A Promising Alternative for 3D Bioprinting. Biomacromolecules, 2021, 22, 4956-4966.	5.4	16
149	Synthesis, Characterization, and Biological Interaction of Glyconanoparticles with Controlled Branching. Biomacromolecules, 2015, 16, 284-294.	5.4	15
150	Embedding of superparamagnetic iron oxide nanoparticles into membranes of well-defined poly(ethylene oxide)-block-poly(Îμ-caprolactone) nanoscale magnetovesicles as ultrasensitive MRI probes of membrane bio-degradation. Journal of Materials Chemistry B, 2019, 7, 4692-4705.	5.8	15
151	Synthesis and Self-Assembly of Xylan-Based Amphiphiles: From Bio-Based Vesicles to Antifungal Properties. Biomacromolecules, 2019, 20, 118-129.	5.4	15
152	Tuning Size and Morphology of mPEG-b-p(HPMA-Bz) Copolymer Self-Assemblies Using Microfluidics. Polymers, 2020, 12, 2572.	4.5	15
153	Hyaluronicâ€Acidâ€Presenting Selfâ€Assembled Nanoparticles Transform a Hyaluronidase HYAL1 Substrate into an Efficient and Selective Inhibitor. Angewandte Chemie - International Edition, 2020, 59, 13591-13596.	13.8	15
154	Refining the Design of Diblock Elastin-Like Polypeptides for Self-Assembly into Nanoparticles. Polymers, 2021, 13, 1470.	4.5	15
155	Expression and purification of short hydrophobic elastin-like polypeptides with maltose-binding protein as a solubility tag. Protein Expression and Purification, 2015, 110, 165-171.	1.3	14
156	A versatile and accessible polymer coating for functionalizable zwitterionic quantum dots with high DNA grafting efficiency. Chemical Communications, 2019, 55, 11067-11070.	4.1	14
157	On the physics of block copolymers. Polymer International, 2006, 55, 1161-1168.	3.1	13
158	Dynamic Assembly of Block-Copolymers. Topics in Current Chemistry, 2011, 322, 165-192.	4.0	13
159	Cellular Uptake and Cytotoxic Effect of Epidermal Growth Factor Receptor Targeted and Plitidepsin Loaded Co-Polymeric Polymersomes on Colorectal Cancer Cell Lines. Journal of Biomedical Nanotechnology, 2015, 11, 2034-2049.	1.1	13
160	Nucleic acids complexation with cationic elastin-like polypeptides: Stoichiometry and stability of nano-assemblies. Journal of Colloid and Interface Science, 2019, 557, 777-792.	9.4	13
161	Thermoinduced Crystallization-Driven Self-Assembly of Bioinspired Block Copolymers in Aqueous Solution. Biomacromolecules, 2020, 21, 3411-3419.	5.4	13
162	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	8.0	13

#	Article	IF	CITATIONS
163	Polymeric micelles and vesicles: biological behavior evaluation using radiolabeling techniques. Pharmaceutical Development and Technology, 2014, 19, 189-193.	2.4	12
164	Effect of the Spacer and Aliphatic Tail Length on the Conformation of "Side-on Fixed―Liquid Crystal Polyacrylates: "SANS―Experiments. Journal De Physique II, 1996, 6, 225-234.	0.9	11
165	What about the Backbone Conformation in Nematic and Smectic C Phases of a "Side-on―Fixed LCP? A SANS Study. Journal De Physique II, 1997, 7, 1417-1424.	0.9	11
166	Novel EDOT and fluorene-based electroluminescent "bricks―as materials for OLEDs. Organic Electronics, 2006, 7, 576-585.	2.6	11
167	Self-assembled core–shell micelles from peptide-b-polymer molecular chimeras towards structure–activity relationships. Faraday Discussions, 2013, 166, 83.	3.2	11
168	Synthesis, self-assembly, and immunological activity of α-galactose-functionalized dendron–lipid amphiphiles. Nanoscale, 2016, 8, 17694-17704.	5.6	11
169	Self-assembly of well-defined triblock copolymers based on poly(lactic acid) and poly(oligo(ethylene) Tj ETQq1 1	0.784314 3.6	ł rgBT ∕Over <mark>l</mark> ⊙
170	Precision polymers with biological activity: Design towards self-assembly and bioactivity. Comptes Rendus Chimie, 2016, 19, 143-147.	0.5	10
171	Polymers at the Interface with Biology. Biomacromolecules, 2018, 19, 3151-3162.	5.4	10
172	Surface Immobilized Nucleic Acid–Transcription Factor Quantum Dots for Biosensing. Advanced Healthcare Materials, 2020, 9, e2000403.	7.6	10
173	Single-molecule mechanical unfolding experiments reveal a critical length for the formation of α-helices in peptides. Nanoscale Horizons, 2020, 5, 671-678.	8.0	10
174	Biofunctional micellar nanoparticles from peptide-b-polymer chimeras. Polymer Chemistry, 2013, 4, 2011.	3.9	9
175	Synthesis, self-assembly, and degradation of amphiphilic triblock copolymers with fully photodegradable hydrophobic blocks. Canadian Journal of Chemistry, 2015, 93, 126-133.	1.1	9
176	Assembly of Fluorescent Polymer Nanoparticles Using Different Microfluidic Mixers. Langmuir, 2022, 38, 7945-7955.	3.5	9
177	Biocompatibility study of two diblock copolymeric nanoparticles for biomedical applications by in vitro toxicity testing. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	7
178	Coupling of RAFT polymerization and chemoselective post-modifications of elastin-like polypeptides for the synthesis of gene delivery hybrid vectors. Polymer Chemistry, 2021, 12, 226-241.	3.9	7
179	Self-assembled PEGylated amphiphilic polypeptides for gene transfection. Journal of Materials Chemistry B, 2021, 9, 8224-8236.	5.8	7
180	Photooxidation Responsive Elastin-Like Polypeptide Conjugates for Photodynamic Therapy Application. Bioconjugate Chemistry, 2021, 32, 1719-1728.	3.6	7

#	Article	IF	CITATIONS
181	Small angle neutron scattering experiments in smectic A and smectic B phases of diluted liquid crystal copolysiloxanes. Journal De Physique II, 1994, 4, 2249-2255.	0.9	7
182	Design and Self-Assembly of Sugar-Based Amphiphiles: Spherical to Cylindrical Micelles. Langmuir, 2022, 38, 7535-7544.	3.5	7
183	Strong anisotropic nematic order in liquid crystal polymers: [4] a quasi-elastic neutron scattering study. European Physical Journal B, 1998, 5, 79-85.	1.5	6
184	Triblock Copolymer Lubricant Films under Shear: Effect of Molecular Cross-Linking. Journal of Adhesion, 2007, 83, 431-448.	3.0	6
185	Hyaluronicâ€Acidâ€Presenting Selfâ€Assembled Nanoparticles Transform a Hyaluronidase HYAL1 Substrate into an Efficient and Selective Inhibitor. Angewandte Chemie, 2020, 132, 13693-13698.	2.0	6
186	Multivalent Elastin-Like Glycopolypeptides: Subtle Chemical Structure Modifications with High Impact on Lectin Binding Affinity. ACS Macro Letters, 2021, 10, 65-70.	4.8	6
187	Thermosensitive Vesicles from Chemically Encoded Lipidâ€Grafted Elastinâ€like Polypeptides. Angewandte Chemie, 2021, 133, 15163-15167.	2.0	6
188	Backbone conformation study on "side-on fixed―liquid crystal polymers. Physica B: Condensed Matter, 1997, 234-236, 250-251.	2.7	5
189	Future Directions at the Frontier of Polymer Science and Biology. Biomacromolecules, 2019, 20, 1-3.	5.4	5
190	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	8.0	5
191	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	9.1	5
192	Amphiphilic Nucleobase-Containing Polypeptide Copolymers—Synthesis and Self-Assembly. Polymers, 2020, 12, 1357.	4.5	5
193	Bioinspired Macromolecular Materials. Biomacromolecules, 2021, 22, 1-3.	5.4	5
194	An Allosteric Transcription Factor DNA-Binding Electrochemical Biosensor for Progesterone. ACS Sensors, 2022, 7, 1132-1137.	7.8	5
195	The quantum dot <i>vs.</i> organic dye conundrum for ratiometric FRET-based biosensors: which one would you chose?. Chemical Science, 2022, 13, 6715-6731.	7.4	5
196	Organogels from trehalose difatty ester amphiphiles. Soft Matter, 2019, 15, 956-962.	2.7	4
197	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	4.6	4

#	Article	IF	CITATIONS
199	A prototype reversible polymersome-stabilized H ₂ S photoejector operating under pseudophysiological conditions. Organic and Biomolecular Chemistry, 2016, 14, 6394-6397.	2.8	3
200	Photopolymerization-Induced Polymersome Rupture. Langmuir, 2019, 35, 8398-8403.	3.5	3
201	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	13.7	3
202	Sequential acid-catalyzed alkyl glycosylation and oligomerization of unprotected carbohydrates. Green Chemistry, 2021, 23, 1361-1369.	9.0	3
203	Block Copolymers as Templates for the Generation of Mesostructured Inorganic Materials. , 0, , 291-307.		3
204	Tear of lipid membranes by nanoparticles. Soft Matter, 2022, 18, 3318-3322.	2.7	3
205	Thermodynamic and Conformational Study of Side On/Side End Fixed Liquid Crystalline Copolyacrylates. Journal De Physique II, 1996, 6, 1231-1242.	0.9	2
206	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	14.6	2
207	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	14.6	2
208	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	47.7	2
209	Block Ionomers for Fuel Cell Application. , 0, , 337-366.		2
210	Relationship between structure and conformation in liquid crystalline polymers. Macromolecular Symposia, 1997, 118, 207-212.	0.7	1
211	792: Polysaccharide-based nanocarriers targeting CD44 for lung cancer treatment. European Journal of Cancer, 2014, 50, S191.	2.8	1
212	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	17.4	1
213	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	8.7	1
214	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	2.3	1
215	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	4.6	1
216	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	11.3	1

#	Article	IF	CITATIONS
217	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	2.8	1
218	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	3.0	1
219	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	11.2	1
220	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	13.7	1
221	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	2.6	1
222	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	3.0	1
223	Biomacromolecules Update: Welcome to Our New Editors and New Procedure for Review Submission. Biomacromolecules, 2021, 22, 1757-1758.	5.4	1
224	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	5.2	1
225	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	3.5	1
226	Enhanced Dielectric Relaxation in Self-Organized Layers of Polypeptides Coupled to Platinum Nanoparticles: Temperature Dependence and Effect of Bias Voltage. Journal of Physical Chemistry C, 2021, 125, 22643-22649.	3.1	1
227	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	4.6	1
228	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	3.5	1
229	BULK AND SOLUTION PROPERTIES OF PEPTIDE-POLYMER CONJUGATES. , 2010, , 15-59.		0
230	Vectorisation et délivrance ciblée de médicaments ou gènes inductibles par des nanoparticules sensibles à l'hyperthermie sous contrÃ1e de l'IRM - NanoBioImaging. Irbm, 2011, 32, 185-190.	5.6	0
231	Editorial: Precision polymer materials. European Polymer Journal, 2015, 62, 244-246.	5.4	0
232	Innenrücktitelbild: Polymersome Popping by Lightâ€Induced Osmotic Shock under Temporal, Spatial, and Spectral Control (Angew. Chem. 6/2017). Angewandte Chemie, 2017, 129, 1699-1699.	2.0	0
233	Titelbild: Aqueous Ringâ€Opening Polymerizationâ€Induced Selfâ€Assembly (ROPISA) of Nâ€Carboxyanhydrides (Angew. Chem. 2/2020). Angewandte Chemie, 2020, 132, 517-517.	2.0	0
234	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	4.9	0

#	Article	IF	CITATIONS
235	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	2.5	0
236	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	5.2	0
237	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	11.3	0
238	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	3.4	0
239	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	3.5	0
240	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	2.7	0
241	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	4.8	0
242	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
243	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	6.6	0
244	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	4.9	0
245	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	6.7	0
246	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	6.5	0
247	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	6.7	0
248	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	3.7	0
249	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	3.5	0
250	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	4.4	0
251	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
252	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	2.8	0

#	Article	IF	CITATIONS
253	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
254	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	5.1	0
255	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	3.7	0
256	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	3.0	0
257	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	2.8	0
258	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	5.1	0
259	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	7.8	0
260	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	2.5	0
261	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.9	0
262	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	2.7	0
263	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	3.5	0
264	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	4.3	0
265	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	3.1	0
266	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	4.6	0
267	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	3.8	0
268	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	5.1	0
269	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	5.3	0
270	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	3.2	0

#	Article	IF	CITATIONS
271	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	6.5	Ο
272	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	2.3	0
273	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	2.7	0
274	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	6.7	0
275	Welcome to Our <i>Biomacromolecules</i> New Associate Editors. Biomacromolecules, 2020, 21, 1963-1965.	5.4	Ο
276	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	6.7	0
277	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	3.3	Ο
278	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	4.0	0
279	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	5.0	Ο
280	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	4.4	0
281	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	3.4	Ο
282	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	5.3	0
283	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	5.4	Ο
284	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	6.4	0
285	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	4.8	Ο
286	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	2.3	0
287	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	15.6	Ο
288	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	2.5	0

#	Article	IF	CITATIONS
289	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	17.4	0
290	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	5.4	0
291	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	3.7	0
292	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	5.2	0
293	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	2.6	0
294	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	3.6	0
295	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	5.0	0
296	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	3.0	0
297	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	3.8	0
298	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.9	0
299	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	3.6	0
300	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	2.1	0
301	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	3.3	0
302	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	5.1	0
303	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	4.6	0
304	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	3.2	0
305	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	2.8	0
306	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	15.6	0

#	Article	IF	CITATIONS
307	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	5.4	0
308	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	47.7	0
309	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	10.0	0
310	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	3.5	0
311	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	4.6	Ο
312	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	3.8	0
313	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	6.4	0
314	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	2.5	0
315	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	9.1	0
316	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	7.8	0
317	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	5.4	0
318	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	3.7	0
319	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	4.0	0
320	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	2.3	0
321	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	4.6	0
322	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	7.6	0
323	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	4.6	0
324	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	4.3	0

#	Article	IF	CITATIONS
325	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	5.2	0
326	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	2.7	0
327	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	8.7	0
328	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
329	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	3.8	0
330	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	4.6	0
331	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	3.1	0
332	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	4.8	0
333	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	6.6	0
334	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	10.0	0
335	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	2.1	0
336	From Biosensors to Drug Delivery and Tissue Engineering: Open Biomaterials Research. ACS Omega, 2022, 7, 6437-6438.	3.5	0
337	Block Copolymers at Interfaces. , 0, , 275-290.		0
338	Synthesis, Self-Assembly and Applications of Polyferrocenylsilane (PFS) Block Copolymers. , 0, , 151-168.		0