
Jacob B Lowenstern

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7403130/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for volcano-observatory operations during crises: recommendations from the 2019 volcano observatory best practices meeting. Journal of Applied Volcanology, 2022, 11, .	2.0	26
2	Strengthening local volcano observatories through global collaborations. Bulletin of Volcanology, 2022, 84, .	3.0	13
3	An Experimental Investigation of Interaction between Andesite and Hyperacidic Volcanic Lake Water. Minerals (Basel, Switzerland), 2020, 10, 96.	2.0	6
4	Magma Intrusion and Volatile Ascent Beneath Norris Geyser Basin, Yellowstone National Park. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018208.	3.4	15
5	Vapor-bubble growth in olivine-hosted melt inclusions. American Mineralogist, 2020, 105, 1898-1919.	1.9	33
6	The 2017–19 activity at Mount Agung in Bali (Indonesia): Intense unrest, monitoring, crisis response, evacuation, and eruption. Scientific Reports, 2019, 9, 8848.	3.3	57
7	Causes of distal volcano-tectonic seismicity inferred from hydrothermal modeling. Journal of Volcanology and Geothermal Research, 2017, 345, 98-108.	2.1	23
8	Conversion of Wet Glass to Melt at Lower Seismogenic Zone Conditions: Implications for Pseudotachylyte Creep. Geophysical Research Letters, 2017, 44, 10,248.	4.0	5
9	Monitoring gas and heat emissions at Norris Geyser Basin, Yellowstone National Park, USA based on a combined eddy covariance and Multi-GAS approach. Journal of Volcanology and Geothermal Research, 2017, 347, 312-326.	2.1	22
10	Quantifying gas emissions from the "Millennium Eruption―of Paektu volcano, Democratic People's Republic of Korea/China. Science Advances, 2016, 2, e1600913.	10.3	43
11	Geothermal solute flux monitoring and the source and fate of solutes in the Snake River, Yellowstone National Park, WY. Applied Geochemistry, 2016, 73, 142-156.	3.0	10
12	Multireaction equilibrium geothermometry: A sensitivity analysis using data from the Lower Geyser Basin, Yellowstone National Park, USA. Journal of Volcanology and Geothermal Research, 2016, 328, 105-114.	2.1	17
13	Radiocarbon dating of silica sinter deposits in shallow drill cores from the Upper Geyser Basin, Yellowstone National Park. Journal of Volcanology and Geothermal Research, 2016, 310, 132-136.	2.1	15
14	Origins of geothermal gases at Yellowstone. Journal of Volcanology and Geothermal Research, 2015, 302, 87-101.	2.1	51
15	Bursting the bubble of melt inclusions. American Mineralogist, 2015, 100, 672-673.	1.9	8
16	Melt Inclusions. , 2014, , 143-173.		34
17	Prodigious degassing of a billion years of accumulated radiogenic helium at Yellowstone. Nature, 2014, 506, 355-358.	27.8	69
18	Dynamics of the Yellowstone hydrothermal system. Reviews of Geophysics, 2014, 52, 375-411.	23.0	122

JACOB B LOWENSTERN

#	Article	IF	CITATIONS
19	Modeling ash fall distribution from a Yellowstone supereruption. Geochemistry, Geophysics, Geosystems, 2014, 15, 3459-3475.	2.5	46
20	Analysis of H2O in silicate glass using attenuated total reflectance (ATR) micro-FTIR spectroscopy. American Mineralogist, 2013, 98, 1660-1668.	1.9	46
21	Composition and origin of rhyolite melt intersected by drilling in the Krafla geothermal field, Iceland. Contributions To Mineralogy and Petrology, 2013, 165, 327-347.	3.1	54
22	The Chaitén rhyolite lava dome: Eruption sequence, lava dome volumes, rapid effusion rates and source of the rhyolite magma. Andean Geology, 2013, 40, .	0.5	42
23	Degassing of Cl, F, Li, and Be during extrusion and crystallization of the rhyolite dome at Volcán Chaitén, Chile during 2008 and 2009. Bulletin of Volcanology, 2012, 74, 2303-2319.	3.0	27
24	Carbon dioxide and hydrogen sulfide degassing and cryptic thermal input to Brimstone Basin, Yellowstone National Park, Wyoming. Chemical Geology, 2012, 330-331, 233-243.	3.3	30
25	Insights from fumarole gas geochemistry on the origin of hydrothermal fluids on the Yellowstone Plateau. Geochimica Et Cosmochimica Acta, 2012, 89, 265-278.	3.9	40
26	Generation and evolution of hydrothermal fluids at Yellowstone: Insights from the Heart Lake Geyser Basin. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	43
27	Identifying bubble collapse in a hydrothermal system using hidden Markov models. Geophysical Research Letters, 2012, 39, .	4.0	14
28	Solute and geothermal flux monitoring using electrical conductivity in the Madison, Firehole, and Gibbon Rivers, Yellowstone National Park. Applied Geochemistry, 2012, 27, 2370-2381.	3.0	15
29	Use of ASTER and MODIS thermal infrared data to quantify heat flow and hydrothermal change at Yellowstone National Park. Journal of Volcanology and Geothermal Research, 2012, 233-234, 72-89.	2.1	65
30	Molybdenite Saturation in Silicic Magmas: Occurrence and Petrological Implications. Journal of Petrology, 2011, 52, 891-904.	2.8	68
31	The role of dyking and fault control in the rapid onset of eruption at Chaitén volcano, Chile. Nature, 2011, 478, 374-377.	27.8	65
32	Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica. Earth and Planetary Science Letters, 2011, 306, 261-271.	4.4	116
33	Origin of a rhyolite that intruded a geothermal well while drilling at the Krafla volcano, Iceland. Geology, 2011, 39, 231-234.	4.4	86
34	Interdisciplinary Studies of Eruption at Chaitén Volcano, Chile. Eos, 2010, 91, 381-382.	0.1	22
35	River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA. Chemical Geology, 2010, 276, 331-343.	3.3	28
36	Contamination of basaltic lava by seawater: Evidence found in a lava pillar from Axial Seamount, Juan de Fuca Ridge. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	7

JACOB B LOWENSTERN

#	Article	IF	CITATIONS
37	Volatile emissions and gas geochemistry of Hot Spring Basin, Yellowstone National Park, USA. Journal of Volcanology and Geothermal Research, 2008, 178, 751-762.	2.1	68
38	Monitoring a Supervolcano in Repose: Heat and Volatile Flux at the Yellowstone Caldera. Elements, 2008, 4, 35-40.	0.5	131
39	Zircon crystallization and recycling in the magma chamber of the rhyolitic Kos Plateau Tuff (Aegean) Tj ETQq1 1	0.784314 4.4	ł rg₿Ţ /Overio
40	Spatial and temporal geochemical trends in the hydrothermal system of Yellowstone National Park: Inferences from river solute fluxes. Journal of Volcanology and Geothermal Research, 2007, 162, 149-171.	2.1	49
41	Monitoring super-volcanoes: geophysical and geochemical signals at Yellowstone and other large caldera systems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 2055-2072.	3.4	98
42	Chapter 7 Magmatic-hydrothermal fluid interaction and mineralization in alkali-syenite nodules from the Breccia Museo pyroclastic deposit, Naples, Italy. Developments in Volcanology, 2006, , 125-161.	0.5	11
43	Extreme U-Th Disequilibrium in Rift-Related Basalts, Rhyolites and Granophyric Granite and the Timescale of Rhyolite Generation, Intrusion and Crystallization at Alid Volcanic Center, Eritrea. Journal of Petrology, 2006, 47, 2105-2122.	2.8	39
44	Magma Generation at a Large, Hyperactive Silicic Volcano (Taupo, New Zealand) Revealed by U–Th and U–Pb Systematics in Zircons. Journal of Petrology, 2005, 46, 3-32.	2.8	349
45	The ubiquitous nature of accessory calcite in granitoid rocks: Implications for weathering, solute evolution, and petrogenesis. Geochimica Et Cosmochimica Acta, 2005, 69, 1455-1471.	3.9	131
46	Late Pleistocene granodiorite source for recycled zircon and phenocrysts in rhyodacite lava at Crater Lake, Oregon. Earth and Planetary Science Letters, 2005, 233, 277-293.	4.4	180
47	What makes hydromagmatic eruptions violent? Some insights from the KeanakÄko'i Ash, Kı̄lauea Volcano, Hawai'i. Journal of Volcanology and Geothermal Research, 2004, 137, 15-31.	2.1	69
48	Age of the Rockland tephra, western USA. Quaternary Research, 2004, 62, 94-104.	1.7	31
49	Melt inclusions come of age: Volatiles, volcanoes, and sorby's legacy. Developments in Volcanology, 2003, 5, 1-21.	0.5	50
50	Crystallisation ages in coeval silicic magma bodies: 238U–230Th disequilibrium evidence from the Rotoiti and Earthquake Flat eruption deposits, Taupo Volcanic Zone, New Zealand. Earth and Planetary Science Letters, 2003, 206, 441-457.	4.4	94
51	Analytical techniques for volatiles: A case study using intermediate (andesitic) glasses. American Mineralogist, 2002, 87, 1077-1089.	1.9	83
52	VolatileCalc: a silicate melt–H2O–CO2 solution model written in Visual Basic for excel. Computers and Geosciences, 2002, 28, 597-604.	4.2	812
53	Carbon dioxide in magmas and implications for hydrothermal systems. Mineralium Deposita, 2001, 36, 490-502.	4.1	324
54	A review of the contrasting behavior of two magmatic volatiles: chlorine and carbon dioxide. Journal of Geochemical Exploration, 2000, 69-70, 287-290.	3.2	51

JACOB B LOWENSTERN

#	Article	IF	CITATIONS
55	U–Th dating of single zircons from young granitoid xenoliths: new tools for understanding volcanic processes. Earth and Planetary Science Letters, 2000, 183, 291-302.	4.4	73
56	A geochemical reconnaissance of the Alid volcaniccenter and geothermal system, Danakil depression, Eritrea. Geothermics, 1999, 28, 161-187.	3.4	18
57	Comagmatic A-type Granophyre and Rhyolite from the Alid Volcanic Center, Eritrea, Northeast Africa. Journal of Petrology, 1997, 38, 1707-1721.	2.8	74
58	Exsolved magmatic fluid and its role in the formation of comb-layered quartz at the Cretaceous Logtung W-Mo deposit, Yukon Territory, Canada. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1996, 87, 291-303.	0.3	63
59	Volatile transport in a convecting magma column: Implications for porphyry Mo mineralization. Geology, 1995, 23, 1091.	4.4	116
60	Dissolved volatile concentrations in an ore-forming magma. Geology, 1994, 22, 893.	4.4	113
61	The role of magmas in the formation of hydrothermal ore deposits. Nature, 1994, 370, 519-527.	27.8	1,465
62	The occurrence and distribution of Mo and molybdenite in unaltered peralkaline rhyolites from Pantelleria, Italy. Contributions To Mineralogy and Petrology, 1993, 114, 119-129.	3.1	30
63	Evidence for a copper-bearing fluid in magma erupted at the Valley of ten thousand smokes, Alaska. Contributions To Mineralogy and Petrology, 1993, 114, 409-421.	3.1	101
64	The West Mageik Lake Sill Complex as an analogue for magma transport during the 1912 Eruption at the Valley of Ten Thousand Smokes, Alaska. Geophysical Research Letters, 1991, 18, 1569-1572.	4.0	10
65	Petrogenesis of highâ€silica rhyolite on the Alaska Peninsula. Geophysical Research Letters, 1991, 18, 1565-1568.	4.0	8
66	Evidence for Extreme Partitioning of Copper into a Magmatic Vapor Phase. Science, 1991, 252, 1405-1409.	12.6	131
67	New data on magmatic H2O contents of pantellerites, with implications for petrogenesis and eruptive dynamics at Pantelleria. Bulletin of Volcanology, 1991, 54, 78-83.	3.0	112