Jacob B Lowenstern

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7403130/publications.pdf

Version: 2024-02-01

67 papers 6,560 citations

38 h-index 102487 66 g-index

85 all docs

85 docs citations

85 times ranked

4488 citing authors

#	Article	IF	CITATIONS
1	The role of magmas in the formation of hydrothermal ore deposits. Nature, 1994, 370, 519-527.	27.8	1,465
2	VolatileCalc: a silicate melt–H2O–CO2 solution model written in Visual Basic for excel. Computers and Geosciences, 2002, 28, 597-604.	4.2	812
3	Magma Generation at a Large, Hyperactive Silicic Volcano (Taupo, New Zealand) Revealed by U–Th and U–Pb Systematics in Zircons. Journal of Petrology, 2005, 46, 3-32.	2.8	349
4	Carbon dioxide in magmas and implications for hydrothermal systems. Mineralium Deposita, 2001, 36, 490-502.	4.1	324
5	Late Pleistocene granodiorite source for recycled zircon and phenocrysts in rhyodacite lava at Crater Lake, Oregon. Earth and Planetary Science Letters, 2005, 233, 277-293.	4.4	180
6	Evidence for Extreme Partitioning of Copper into a Magmatic Vapor Phase. Science, 1991, 252, 1405-1409.	12.6	131
7	The ubiquitous nature of accessory calcite in granitoid rocks: Implications for weathering, solute evolution, and petrogenesis. Geochimica Et Cosmochimica Acta, 2005, 69, 1455-1471.	3.9	131
8	Monitoring a Supervolcano in Repose: Heat and Volatile Flux at the Yellowstone Caldera. Elements, 2008, 4, 35-40.	0.5	131
9	Dynamics of the Yellowstone hydrothermal system. Reviews of Geophysics, 2014, 52, 375-411.	23.0	122
10	Volatile transport in a convecting magma column: Implications for porphyry Mo mineralization. Geology, 1995, 23, 1091.	4.4	116
11	Zircon crystallization and recycling in the magma chamber of the rhyolitic Kos Plateau Tuff (Aegean) Tj ETQq $1\ 1$ (0.784314	rgBT/Overloo
12	Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica. Earth and Planetary Science Letters, 2011, 306, 261-271.	4.4	116
13	Dissolved volatile concentrations in an ore-forming magma. Geology, 1994, 22, 893.	4.4	113
14	New data on magmatic H2O contents of pantellerites, with implications for petrogenesis and eruptive dynamics at Pantelleria. Bulletin of Volcanology, 1991, 54, 78-83.	3.0	112
15	Evidence for a copper-bearing fluid in magma erupted at the Valley of ten thousand smokes, Alaska. Contributions To Mineralogy and Petrology, 1993, 114, 409-421.	3.1	101
16	Monitoring super-volcanoes: geophysical and geochemical signals at Yellowstone and other large caldera systems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 2055-2072.	3.4	98
17	Crystallisation ages in coeval silicic magma bodies: 238U–230Th disequilibrium evidence from the Rotoiti and Earthquake Flat eruption deposits, Taupo Volcanic Zone, New Zealand. Earth and Planetary Science Letters, 2003, 206, 441-457.	4.4	94
18	Origin of a rhyolite that intruded a geothermal well while drilling at the Krafla volcano, Iceland. Geology, 2011, 39, 231-234.	4.4	86

#	Article	IF	CITATIONS
19	Analytical techniques for volatiles: A case study using intermediate (andesitic) glasses. American Mineralogist, 2002, 87, 1077-1089.	1.9	83
20	Comagmatic A-type Granophyre and Rhyolite from the Alid Volcanic Center, Eritrea, Northeast Africa. Journal of Petrology, 1997, 38, 1707-1721.	2.8	74
21	U–Th dating of single zircons from young granitoid xenoliths: new tools for understanding volcanic processes. Earth and Planetary Science Letters, 2000, 183, 291-302.	4.4	73
22	What makes hydromagmatic eruptions violent? Some insights from the KeanakÄko'i Ash, Kı̄lauea Volcano, Hawai'i. Journal of Volcanology and Geothermal Research, 2004, 137, 15-31.	2.1	69
23	Prodigious degassing of a billion years of accumulated radiogenic helium at Yellowstone. Nature, 2014, 506, 355-358.	27.8	69
24	Volatile emissions and gas geochemistry of Hot Spring Basin, Yellowstone National Park, USA. Journal of Volcanology and Geothermal Research, 2008, 178, 751-762.	2.1	68
25	Molybdenite Saturation in Silicic Magmas: Occurrence and Petrological Implications. Journal of Petrology, 2011, 52, 891-904.	2.8	68
26	The role of dyking and fault control in the rapid onset of eruption at Chaitén volcano, Chile. Nature, 2011, 478, 374-377.	27.8	65
27	Use of ASTER and MODIS thermal infrared data to quantify heat flow and hydrothermal change at Yellowstone National Park. Journal of Volcanology and Geothermal Research, 2012, 233-234, 72-89.	2.1	65
28	Exsolved magmatic fluid and its role in the formation of comb-layered quartz at the Cretaceous Logtung W-Mo deposit, Yukon Territory, Canada. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1996, 87, 291-303.	0.3	63
29	The 2017–19 activity at Mount Agung in Bali (Indonesia): Intense unrest, monitoring, crisis response, evacuation, and eruption. Scientific Reports, 2019, 9, 8848.	3.3	57
30	Composition and origin of rhyolite melt intersected by drilling in the Krafla geothermal field, Iceland. Contributions To Mineralogy and Petrology, 2013, 165, 327-347.	3.1	54
31	A review of the contrasting behavior of two magmatic volatiles: chlorine and carbon dioxide. Journal of Geochemical Exploration, 2000, 69-70, 287-290.	3.2	51
32	Origins of geothermal gases at Yellowstone. Journal of Volcanology and Geothermal Research, 2015, 302, 87-101.	2.1	51
33	Melt inclusions come of age: Volatiles, volcanoes, and sorby's legacy. Developments in Volcanology, 2003, 5, 1-21.	0.5	50
34	Spatial and temporal geochemical trends in the hydrothermal system of Yellowstone National Park: Inferences from river solute fluxes. Journal of Volcanology and Geothermal Research, 2007, 162, 149-171.	2.1	49
35	Analysis of H2O in silicate glass using attenuated total reflectance (ATR) micro-FTIR spectroscopy. American Mineralogist, 2013, 98, 1660-1668.	1.9	46
36	Modeling ash fall distribution from a Yellowstone supereruption. Geochemistry, Geophysics, Geosystems, 2014, 15, 3459-3475.	2.5	46

#	Article	IF	CITATIONS
37	Generation and evolution of hydrothermal fluids at Yellowstone: Insights from the Heart Lake Geyser Basin. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	43
38	Quantifying gas emissions from the "Millennium Eruption―of Paektu volcano, Democratic People's Republic of Korea/China. Science Advances, 2016, 2, e1600913.	10.3	43
39	The Chait \tilde{A} ©n rhyolite lava dome: Eruption sequence, lava dome volumes, rapid effusion rates and source of the rhyolite magma. Andean Geology, 2013, 40, .	0.5	42
40	Insights from fumarole gas geochemistry on the origin of hydrothermal fluids on the Yellowstone Plateau. Geochimica Et Cosmochimica Acta, 2012, 89, 265-278.	3.9	40
41	Extreme U-Th Disequilibrium in Rift-Related Basalts, Rhyolites and Granophyric Granite and the Timescale of Rhyolite Generation, Intrusion and Crystallization at Alid Volcanic Center, Eritrea. Journal of Petrology, 2006, 47, 2105-2122.	2.8	39
42	Melt Inclusions. , 2014, , 143-173.		34
43	Vapor-bubble growth in olivine-hosted melt inclusions. American Mineralogist, 2020, 105, 1898-1919.	1.9	33
44	Age of the Rockland tephra, western USA. Quaternary Research, 2004, 62, 94-104.	1.7	31
45	The occurrence and distribution of Mo and molybdenite in unaltered peralkaline rhyolites from Pantelleria, Italy. Contributions To Mineralogy and Petrology, 1993, 114, 119-129.	3.1	30
46	Carbon dioxide and hydrogen sulfide degassing and cryptic thermal input to Brimstone Basin, Yellowstone National Park, Wyoming. Chemical Geology, 2012, 330-331, 233-243.	3.3	30
47	River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA. Chemical Geology, 2010, 276, 331-343.	3.3	28
48	Degassing of Cl, F, Li, and Be during extrusion and crystallization of the rhyolite dome at $Volc\tilde{A}_{i}$ n Chait \tilde{A} ©n, Chile during 2008 and 2009. Bulletin of $Volcanology$, 2012, 74, 2303-2319.	3.0	27
49	Guidelines for volcano-observatory operations during crises: recommendations from the 2019 volcano observatory best practices meeting. Journal of Applied Volcanology, 2022, 11 , .	2.0	26
50	Causes of distal volcano-tectonic seismicity inferred from hydrothermal modeling. Journal of Volcanology and Geothermal Research, 2017, 345, 98-108.	2.1	23
51	Interdisciplinary Studies of Eruption at Chaitén Volcano, Chile. Eos, 2010, 91, 381-382.	0.1	22
52	Monitoring gas and heat emissions at Norris Geyser Basin, Yellowstone National Park, USA based on a combined eddy covariance and Multi-GAS approach. Journal of Volcanology and Geothermal Research, 2017, 347, 312-326.	2.1	22
53	A geochemical reconnaissance of the Alid volcaniccenter and geothermal system, Danakil depression, Eritrea. Geothermics, 1999, 28, 161-187.	3.4	18
54	Multireaction equilibrium geothermometry: A sensitivity analysis using data from the Lower Geyser Basin, Yellowstone National Park, USA. Journal of Volcanology and Geothermal Research, 2016, 328, 105-114.	2.1	17

#	Article	IF	CITATIONS
55	Solute and geothermal flux monitoring using electrical conductivity in the Madison, Firehole, and Gibbon Rivers, Yellowstone National Park. Applied Geochemistry, 2012, 27, 2370-2381.	3.0	15
56	Radiocarbon dating of silica sinter deposits in shallow drill cores from the Upper Geyser Basin, Yellowstone National Park. Journal of Volcanology and Geothermal Research, 2016, 310, 132-136.	2.1	15
57	Magma Intrusion and Volatile Ascent Beneath Norris Geyser Basin, Yellowstone National Park. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018208.	3.4	15
58	Identifying bubble collapse in a hydrothermal system using hidden Markov models. Geophysical Research Letters, 2012, 39, .	4.0	14
59	Strengthening local volcano observatories through global collaborations. Bulletin of Volcanology, 2022, 84, .	3.0	13
60	Chapter 7 Magmatic-hydrothermal fluid interaction and mineralization in alkali-syenite nodules from the Breccia Museo pyroclastic deposit, Naples, Italy. Developments in Volcanology, 2006, , 125-161.	0.5	11
61	The West Mageik Lake Sill Complex as an analogue for magma transport during the 1912 Eruption at the Valley of Ten Thousand Smokes, Alaska. Geophysical Research Letters, 1991, 18, 1569-1572.	4.0	10
62	Geothermal solute flux monitoring and the source and fate of solutes in the Snake River, Yellowstone National Park, WY. Applied Geochemistry, 2016, 73, 142-156.	3.0	10
63	Petrogenesis of highâ€silica rhyolite on the Alaska Peninsula. Geophysical Research Letters, 1991, 18, 1565-1568.	4.0	8
64	Bursting the bubble of melt inclusions. American Mineralogist, 2015, 100, 672-673.	1.9	8
65	Contamination of basaltic lava by seawater: Evidence found in a lava pillar from Axial Seamount, Juan de Fuca Ridge. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	7
66	An Experimental Investigation of Interaction between Andesite and Hyperacidic Volcanic Lake Water. Minerals (Basel, Switzerland), 2020, 10, 96.	2.0	6
67	Conversion of Wet Glass to Melt at Lower Seismogenic Zone Conditions: Implications for Pseudotachylyte Creep. Geophysical Research Letters, 2017, 44, 10,248.	4.0	5