

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7402793/publications.pdf Version: 2024-02-01

ΤΛΙ ΧΙ

#	Article	IF	CITATIONS
1	A critical role for macrophages in neovessel formation and the development of stenosis in tissueâ€engineered vascular grafts. FASEB Journal, 2011, 25, 4253-4263.	0.5	199
2	Small-diameter biodegradable scaffolds for functional vascular tissue engineering in the mouse model. Biomaterials, 2008, 29, 1454-1463.	11.4	160
3	Tissue-Engineered Small Diameter Arterial Vascular Grafts from Cell-Free Nanofiber PCL/Chitosan Scaffolds in a Sheep Model. PLoS ONE, 2016, 11, e0158555.	2.5	156
4	Well-organized neointima of large-pore poly(l-lactic acid) vascular graft coated with poly(l-lactic-co-ε-caprolactone) prevents calcific deposition compared to small-pore electrospun poly(l-lactic acid) graft in a mouse aortic implantation model. Atherosclerosis, 2014, 237, 684-691.	0.8	75
5	Long-Term Functional Efficacy of a Novel Electrospun Poly(Clycerol Sebacate)-Based Arterial Graft in Mice. Annals of Biomedical Engineering, 2016, 44, 2402-2416.	2.5	71
6	Tissue-engineered vascular grafts: does cell seeding matter?. Journal of Pediatric Surgery, 2010, 45, 1299-1305.	1.6	62
7	The innate immune system contributes to tissueâ€engineered vascular graft performance. FASEB Journal, 2015, 29, 2431-2438.	0.5	58
8	Development of Small Diameter Nanofiber Tissue Engineered Arterial Grafts. PLoS ONE, 2015, 10, e0120328.	2.5	56
9	Intratumoral Delivery of InterferonÎ ³ -Secreting Mesenchymal Stromal Cells Repolarizes Tumor-Associated Macrophages and Suppresses Neuroblastoma Proliferation In Vivo. Stem Cells, 2018, 36, 915-924.	3.2	55
10	Evaluation of remodeling process in small-diameter cell-free tissue-engineered arterial graft. Journal of Vascular Surgery, 2015, 62, 734-743.	1.1	52
11	Immuno-driven and Mechano-mediated Neotissue Formation in Tissue Engineered Vascular Grafts. Annals of Biomedical Engineering, 2018, 46, 1938-1950.	2.5	51
12	Fast-degrading bioresorbable arterial vascular graft with high cellular infiltration inhibits calcification of the graft. Journal of Vascular Surgery, 2017, 66, 243-250.	1.1	50
13	Novel Bioresorbable Vascular Graft With Sponge-Type Scaffold as a Small-Diameter Arterial Graft. Annals of Thoracic Surgery, 2016, 102, 720-727.	1.3	43
14	Implantation of VEGFâ€functionalized cellâ€free vascular grafts: regenerative and immunological response. FASEB Journal, 2019, 33, 5089-5100.	0.5	38
15	Role of Bone Marrow Mononuclear Cell Seeding for Nanofiber Vascular Grafts. Tissue Engineering - Part A, 2018, 24, 135-144.	3.1	36
16	Differential outcomes of venous and arterial tissue engineered vascular grafts highlight the importance of coupling long-term implantation studies with computational modeling. Acta Biomaterialia, 2019, 94, 183-194.	8.3	34
17	Tropoelastin inhibits intimal hyperplasia of mouse bioresorbable arterial vascular grafts. Acta Biomaterialia, 2017, 52, 74-80.	8.3	33
18	Engineered Tissue–Stent Biocomposites as Tracheal Replacements. Tissue Engineering - Part A, 2016, 22, 1086-1097.	3.1	30

ται γι

#	Article	IF	CITATIONS
19	Rational design of an improved tissue-engineered vascular graft: determining the optimal cell dose and incubation time. Regenerative Medicine, 2016, 11, 159-167.	1.7	29
20	Pilot Mouse Study of 1 mm Inner Diameter (ID) Vascular Graft Using Electrospun Poly(ester urea) Nanofibers. Advanced Healthcare Materials, 2016, 5, 2427-2436.	7.6	29
21	TGFâ€Î² receptor 1 inhibition prevents stenosis of tissueâ€engineered vascular grafts by reducing host mononuclear phagocyte activation. FASEB Journal, 2016, 30, 2627-2636.	0.5	26
22	Different degradation rates of nanofiber vascular grafts in small and large animal models. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 203-214.	2.7	25
23	Early natural history of neotissue formation in tissue-engineered vascular grafts in a murine model. Regenerative Medicine, 2019, 14, 389-408.	1.7	23
24	Deconstructing the Tissue Engineered Vascular Graft: Evaluating Scaffold Pre-Wetting, Conditioned Media Incubation, and Determining the Optimal Mononuclear Cell Source. ACS Biomaterials Science and Engineering, 2017, 3, 1972-1979.	5.2	22
25	Human Allograft Arterial Injury Is Ameliorated by Sirolimus and Cyclosporine and Correlates with Suppression of Interferon-??. Transplantation, 2006, 81, 559-566.	1.0	21
26	Implantation of Inferior Vena Cava Interposition Graft in Mouse Model. Journal of Visualized Experiments, 2014, , .	0.3	20
27	Amelioration of Human Allograft Arterial Injury by Atorvastatin or Simvastatin Correlates With Reduction of Interferon-1 ³ Production by Infiltrating T Cells. Transplantation, 2008, 86, 719-727.	1.0	18
28	Effects of Braiding Parameters on Tissue Engineered Vascular Graft Development. Advanced Healthcare Materials, 2020, 9, e2001093.	7.6	18
29	Cilostazol, Not Aspirin, Prevents Stenosis of Bioresorbable Vascular Grafts in a Venous Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2003-2010.	2.4	17
30	The role of myeloid cell-derived PDGF-B in neotissue formation in a tissue-engineered vascular graft. Regenerative Medicine, 2017, 12, 249-261.	1.7	16
31	Hemodynamic Characterization of a Mouse Model for Investigating the Cellular and Molecular Mechanisms of Neotissue Formation in Tissue-Engineered Heart Valves. Tissue Engineering - Part C: Methods, 2015, 21, 987-994.	2.1	15
32	Comparison of the Biological Equivalence of Two Methods for Isolating Bone Marrow Mononuclear Cells for Fabricating Tissue-Engineered Vascular Grafts. Tissue Engineering - Part C: Methods, 2015, 21, 597-604.	2.1	15
33	Angiotensin II receptor I blockade prevents stenosis of tissue engineered vascular grafts. FASEB Journal, 2018, 32, 6822-6832.	0.5	13
34	Bone marrow-derived mononuclear cell seeded bioresorbable vascular graft improves acute graft patency by inhibiting thrombus formation via platelet adhesion. International Journal of Cardiology, 2018, 266, 61-66.	1.7	13
35	Interferon-γ–Mediated Allograft Rejection Exacerbates Cardiovascular Disease of Hyperlipidemic Murine Transplant Recipients. Circulation Research, 2015, 117, 943-955.	4.5	12
36	Oversized Biodegradable Arterial Grafts Promote Enhanced Neointimal Tissue Formation. Tissue Engineering - Part A, 2018, 24, 1251-1261.	3.1	12

ΤΑΙ ΥΙ

#	Article	IF	CITATIONS
37	Electrospun Tissue-Engineered Arterial Graft Thickness Affects Long-Term Composition and Mechanics. Tissue Engineering - Part A, 2021, 27, 593-603.	3.1	11
38	Sex and Tamoxifen confound murine experimental studies in cardiovascular tissue engineering. Scientific Reports, 2021, 11, 8037.	3.3	11
39	Tissue Engineered Vascular Graft Recipient Interleukin 10 Status Is Critical for Preventing Thrombosis. Advanced Healthcare Materials, 2020, 9, e2001094.	7.6	8
40	Transplantation of Pulmonary Valve Using a Mouse Model of Heterotopic Heart Transplantation. Journal of Visualized Experiments, 2014, , .	0.3	6
41	Imatinib attenuates neotissue formation during vascular remodeling in an arterial bioresorbable vascular graft. JVS Vascular Science, 2020, 1, 57-67.	1.1	5
42	A mouse model of endocardial fibroelastosis. Cardiovascular Pathology, 2015, 24, 388-394.	1.6	4
43	Novel application and serial evaluation of tissue-engineered portal vein grafts in a murine model. Regenerative Medicine, 2017, 12, 929-938.	1.7	4
44	Fetal Transcatheter Trileaflet Heart Valve Hemodynamics: Implications of Scaling on Valve Mechanics and Turbulence. Annals of Biomedical Engineering, 2020, 48, 1683-1693.	2.5	4
45	Zoledronate alters natural progression of tissueâ€engineered vascular grafts. FASEB Journal, 2021, 35, e21849.	0.5	3
46	A Correlative Imaging Approach for Extracellular Matrix Characterization in Mice. Microscopy and Microanalysis, 2019, 25, 1134-1135.	0.4	0
47	Surgery and Sample Processing for Correlative Imaging of the Murine Pulmonary Valve. Journal of Visualized Experiments, 2021, , .	0.3	0

Nogoâ€B limits intimaâ€media thickening during mouse vein graft adaptation. FASEB Journal, 2008, 22, 174.4. 0.5 0