Yu-Xiu Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7402001/publications.pdf

Version: 2024-02-01

		94433	1	168389	
180	4,784 citations	37		53	
papers	citations	h-index		g-index	
182	182	182		3790	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	ROUTE DEVELOPMENT, ANTIVIRAL STUDIES, FIELD EVALUATION AND TOXICITY OF AN ANTIVIRAL PLANT PROTECTANT NK0238. Frontiers of Agricultural Science and Engineering, 2022, 9, 110.	1.4	2
2	HCl atalyzed Aerobic Oxidation of Alkylarenes to Carbonyls. ChemSusChem, 2022, 15, .	6.8	21
3	Discovery of glyantrypineâ€family alkaloids as novel antiviral and antiphytopathogenicâ€fungus agents. Pest Management Science, 2022, 78, 982-990.	3.4	4
4	Design, synthesis, and insecticidal and fungicidal activities of quaternary ammonium salt derivatives of a triazolyphenyl isoxazoline insecticide. Pest Management Science, 2022, 78, 2011-2021.	3.4	14
5	Combined Photoredox and Carbene Catalysis for the Synthesis of α-Amino Ketones from Carboxylic Acids. ACS Catalysis, 2022, 12, 2522-2531.	11.2	38
6	Design, synthesis and biological activities of echinopsine derivatives containing acylhydrazone moiety. Scientific Reports, 2022, 12, 2935.	3.3	5
7	Arylboronic Acid Deborylation Deuteration via Synergistic Thiol, Lewis Base, and Photoredox Catalysis. Organic Letters, 2022, 24, 2064-2068.	4.6	8
8	Visible Lightâ€Induced Hydrosilylation of Electronâ€Deficient Alkenes by Iron Catalysis. ChemSusChem, 2022, 15, .	6.8	15
9	Electro-reductive C-H cyanoalkylation of quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2022, 33, 4057-4060.	9.0	16
10	Light-Mediated Defluorosilylation of α-Trifluoromethyl Arylalkenes through Hydrogen Atom Transfer. Organic Letters, 2022, 24, 4019-4023.	4.6	22
11	Visible-light-induced Smiles rearrangement without release of SO ₂ : rapid access to alkyl sulfonyl derivatives. Green Chemistry, 2022, 24, 4789-4793.	9.0	5
12	Rapid Access to Aliphatic Sulfonamides. Organic Letters, 2022, 24, 3932-3937.	4.6	2
13	Palladium Metallaphotoredox-Catalyzed 2-Arylation of Indole Derivatives. Organic Letters, 2022, 24, 4580-4585.	4.6	18
14	Electro-oxidative C–H alkylation of quinoxalin-2(1 <i>H</i>)-ones with organoboron compounds. Green Chemistry, 2021, 23, 302-306.	9.0	52
15	Photoredox relay-catalyzed <i>gem</i> -difluoroallylation of alkyl iodides. Chemical Communications, 2021, 57, 9768-9771.	4.1	24
16	Visible-light-mediated three-component Minisci reaction for heteroarylethyl alcohols synthesis. Green Chemistry, 2021, 23, 7963-7968.	9.0	10
17	Electrochemical trifluoromethylation/cyclization for the synthesis of isoquinoline-1,3-diones and oxindoles. Chemical Communications, 2021, 57, 8284-8287.	4.1	23
18	Twoâ€Step Protocol for Iodotrimethylsilaneâ€Mediated Deoxyâ€Functionalization of Alcohols. European Journal of Organic Chemistry, 2021, 2021, 1179-1183.	2.4	1

#	Article	IF	Citations
19	Recent Advances in Visible-Light-Mediated Minisci Reactions. Chinese Journal of Organic Chemistry, 2021, 41, 3771.	1.3	27
20	Visible-light-mediated deuteration of aldehydes with D2O via polarity-matched reversible hydrogen atom transfer. Tetrahedron, 2021, 82, 131946.	1.9	7
21	Visibleâ€Lightâ€Induced Threeâ€Component Intermolecular Trifluoromethylâ€Alkenylation Reactions of Unactivated Alkenes. Advanced Synthesis and Catalysis, 2021, 363, 1651-1655.	4.3	22
22	Synthesis of Unnatural \hat{l} ±-Amino Acids via Photoinduced Decatungstate-Catalyzed Giese Reactions of Aldehydes. Organic Letters, 2021, 23, 2199-2204.	4.6	41
23	Decatungstate as a direct hydrogen atom transfer photocatalyst for synthesis of trifluromethylthioesters from aldehydes. Chinese Chemical Letters, 2021, 32, 3027-3030.	9.0	13
24	Highly Efficient Synthesis and Acaricidal and Insecticidal Activities of Novel Oxazolines with N-Heterocyclic Substituents. Journal of Agricultural and Food Chemistry, 2021, 69, 3601-3606.	5.2	17
25	Photoredox/Hydrogen Atom Transfer Cocatalyzed C–H Difluoroallylation of Amides, Ethers, and Alkyl Aldehydes. Organic Letters, 2021, 23, 2353-2358.	4.6	57
26	Visible-Light-Mediated Alkenylation of Alkyl Boronic Acids without an External Lewis Base as an Activator. Organic Letters, 2021, 23, 2477-2481.	4.6	29
27	Metal-, Photocatalyst-, and Light-Free Minisci C–H Acetylation of N-Heteroarenes with Vinyl Ethers. Organic Letters, 2021, 23, 4374-4378.	4.6	13
28	Design, Synthesis and In-Vitro Biological Evaluation of Antofine and Tylophorine Prodrugs as Hypoxia-Targeted Anticancer Agents. Molecules, 2021, 26, 3327.	3.8	2
29	Target-Directed Design, Synthesis, Antiviral Activity, and SARs of 9-Substituted Phenanthroindolizidine Alkaloid Derivatives. Journal of Agricultural and Food Chemistry, 2021, 69, 7565-7571.	5.2	12
30	Design, Synthesis, and Insecticidal Activity of Novel Triazone Derivatives Containing Sulfonamide or Sulfonimide Moieties. Journal of Agricultural and Food Chemistry, 2021, 69, 10790-10796.	5.2	9
31	Dehalogenative Cross-Coupling of <i>gem</i> -Difluoroalkenes with Alkyl Halides <i>via</i> a Silyl Radical–Mediated Process. Journal of Organic Chemistry, 2021, 86, 12772-12782.	3.2	10
32	Visible-Light-Mediated C–I Difluoroallylation with an α-Aminoalkyl Radical as a Mediator. Organic Letters, 2021, 23, 7306-7310.	4.6	38
33	Electro-oxidative C–H azolation of quinoxalin-2(1 <i>H</i>)-ones. Green Chemistry, 2021, 23, 3246-3249.	9.0	40
34	Visible-light-mediated multicomponent reaction for secondary amine synthesis. Chemical Communications, 2021, 57, 5028-5031.	4.1	31
35	Visible-light-mediated alkylation of 4-alkyl-1,4-dihydropyridines with alkenyl sulfones. Organic and Biomolecular Chemistry, 2021, 19, 8924-8928.	2.8	7
36	Discovery and Nanosized Preparations of (<i>S</i> , <i>R</i>)-Tylophorine Malate as Novel anti-SARS-CoV-2 Agents. ACS Medicinal Chemistry Letters, 2021, 12, 1840-1846.	2.8	8

#	Article	IF	CITATIONS
37	Radical Transformation of Aliphatic C–H Bonds to Oxime Ethers via Hydrogen Atom Transfer. Organic Letters, 2021, 23, 8353-8358.	4.6	20
38	Recent Advances in the Pesticide Activities of 2-Cyanoacrylate Derivatives. Journal of Agricultural and Food Chemistry, 2021, 69, 12933-12946.	5.2	2
39	Preparation and Anti-Tobacco Mosaic Virus Activities of Crocetin Diesters. Journal of Agricultural and Food Chemistry, 2021, 69, 13637-13643.	5.2	6
40	Photoelectrochemical Decarboxylative C–H Alkylation of Quinoxalin-2(1 <i>H</i>)-ones. ACS Sustainable Chemistry and Engineering, 2021, 9, 16820-16828.	6.7	14
41	Design, Synthesis, and Bioactivities of Phthalide and Coumarin Derivatives Based on the Biosynthesis and Structure Simplification of Gossypol. Journal of Agricultural and Food Chemistry, 2021, 69, 15123-15135.	5.2	9
42	Formyl-selective deuteration of aldehydes with D ₂ O <i>via</i> synergistic organic and photoredox catalysis. Chemical Science, 2020, 11, 1026-1031.	7.4	104
43	Visible-Light-Induced Deoxygenation/Defluorination Protocol for Synthesis of \hat{I}^3 , \hat{I}^3 -Difluoroallylic Ketones. Organic Letters, 2020, 22, 709-713.	4.6	96
44	Marineâ€naturalâ€products for biocides development: first discovery of meridianin alkaloids as antiviral and antiâ€phytopathogenicâ€fungus agents. Pest Management Science, 2020, 76, 3369-3376.	3.4	19
45	Light-Mediated Difluoromethylthiolation of Aldehydes with a Hydrogen Atom Transfer Photocatalyst. Organic Letters, 2020, 22, 8272-8277.	4.6	31
46	Rhodium(III)-Catalyzed Direct Coupling of Quinoline-8-Carbaldehydes with (Het)Arylboronic Acids for the Synthesis of 8-Aryloylquinolines. Journal of Organic Chemistry, 2020, 85, 10271-10282.	3.2	8
47	Construction of 2-(2-Arylphenyl)azoles via Cobalt-Catalyzed C–H/C–H Cross-Coupling Reactions and Evaluation of Their Antifungal Activity. Organic Letters, 2020, 22, 9331-9336.	4.6	11
48	Visible-light-induced radical isocyanide insertion protocol for the synthesis of difluoromethylated spiro[indole-3,3′-quinoline] derivatives. Chemical Communications, 2020, 56, 15212-15215.	4.1	12
49	Luotonin A and Its Derivatives as Novel Antiviral and Antiphytopathogenic Fungus Agents. Journal of Agricultural and Food Chemistry, 2020, 68, 8764-8773.	5.2	41
50	Synthesis of 1,4â€Dicarbonyl Compounds by Visibleâ€Lightâ€Mediated Crossâ€Coupling Reactions of αâ€Chlorocarbonyls and Enol Acetates. Advanced Synthesis and Catalysis, 2020, 362, 4391-4396.	4.3	14
51	Electrochemical decarboxylative C3 alkylation of quinoxalin- $2(1 < i > H < /i >)$ -ones with $< i > N < /i >$ -hydroxyphthalimide esters. Chemical Communications, 2020, 56, 11673-11676.	4.1	73
52	Design, Synthesis, Characterization, and Biological Activities of Novel Spirooxindole Analogues Containing Hydantoin, Thiohydantoin, Urea, and Thiourea Moieties. Journal of Agricultural and Food Chemistry, 2020, 68, 10618-10625.	5.2	32
53	Visible-Light-Mediated Manganese-Catalyzed Allylation Reactions of Unactivated Alkyl Iodides. Journal of Organic Chemistry, 2020, 85, 7459-7467.	3.2	19
54	Electron Transfer Photoredox Catalysis: Development of a Photoactivated Reductive Desulfonylation of an Azaâ∈Heteroaromatic Ring. Advanced Synthesis and Catalysis, 2020, 362, 3110-3115.	4.3	12

#	Article	IF	CITATIONS
55	Unnatural α-Amino Acid Synthesized through α-Alkylation of Glycine Derivatives by Diacyl Peroxides. Organic Letters, 2020, 22, 5005-5008.	4.6	40
56	Visible-light-induced dearomative oxamination of indole derivatives and dearomative amidation of phenol derivatives. Chemical Communications, 2020, 56, 8436-8439.	4.1	28
57	Visible-Light-Mediated [2+2+1] Carbocyclization Reactions of 1,7-Enynes with Bromofluoroacetate to Form Fused Monofluorinated Cyclopenta[<i>c</i>]quinolin-4-ones. Journal of Organic Chemistry, 2020, 85, 5379-5389.	3.2	8
58	Efficient synthesis of SCF ₃ -substituted tryptanthrins by a radical tandem cyclization. Organic and Biomolecular Chemistry, 2020, 18, 1994-2001.	2.8	18
59	Photoredoxâ€Catalyzed Redoxâ€Neutral Minisci Câ^'H Formylation of <i>N</i> â€Heteroarenes. Advanced Synthesis and Catalysis, 2020, 362, 2155-2159.	4.3	22
60	Route Evaluation and Ritter Reaction Based Synthesis of Oxazoline Acaricide Candidates FET-II-L and NK-12. Organic Process Research and Development, 2020, 24, 216-227.	2.7	10
61	Discovery of Tryptanthrins as Novel Antiviral and Anti-Phytopathogenic-Fungus Agents. Journal of Agricultural and Food Chemistry, 2020, 68, 5586-5595.	5.2	44
62	Synthesis and Antiviral/Fungicidal/Insecticidal Activities Study of Novel Chiral Indole Diketopiperazine Derivatives Containing Acylhydrazone Moiety. Journal of Agricultural and Food Chemistry, 2020, 68, 5555-5571.	5.2	27
63	Visible-light-mediated photoredox minisci C–H alkylation with alkyl boronic acids using molecular oxygen as an oxidant. Chemical Communications, 2020, 56, 12652-12655.	4.1	43
64	Visible-light-mediated minisci C–H alkylation of heteroarenes with 4-alkyl-1,4-dihydropyridines using O ₂ as an oxidant. Green Chemistry, 2020, 22, 5599-5604.	9.0	32
65	Synthesis of Functionalized Spirocyclic Indolines by Visible Lightâ€Induced Oneâ€Pot Sequential Difluoromethylative Dearomatization, Hydroxylation, and Substitution Reactions. Advanced Synthesis and Catalysis, 2019, 361, 4739-4747.	4.3	24
66	Visible-Light-Induced Copper-Catalyzed Decarboxylative Coupling of Redox-Active Esters with <i>N</i> Heteroarenes. Organic Letters, 2019, 21, 5728-5732.	4.6	60
67	Metal-, photocatalyst-, and light-free late-stage C–H alkylation of N-heteroarenes with organotrimethylsilanes using persulfate as a stoichiometric oxidant. Organic Chemistry Frontiers, 2019, 6, 2902-2906.	4.5	12
68	Visible-light-induced intramolecular sp ³ Câ€"H oxidation of 2-alkyl-substituted benzamides for the synthesis of functionalized iminoisobenzofurans. Chemical Communications, 2019, 55, 13908-13911.	4.1	9
69	Ketones and aldehydes as alkyl radical equivalents for C─H functionalization of heteroarenes. Science Advances, 2019, 5, eaax9955.	10.3	63
70	Boronic Analogues of $(\langle i\rangle R\langle i\rangle)$ -6- $\langle i\rangle O\langle i\rangle$ -Desmethylantofine as Anticancer Agents. Chemical and Pharmaceutical Bulletin, 2019, 67, 1324-1327.	1.3	2
71	Natural Product Cerbinal and Its Analogues Cyclopenta[c]pyridines: Synthesis and Discovery as Novel Pest Control Agents. Journal of Agricultural and Food Chemistry, 2019, 67, 10498-10504.	5.2	12
72	Optimization, Structure–Activity Relationship, and Mode of Action of Nortopsentin Analogues Containing Thiazole and Oxazole Moieties. Journal of Agricultural and Food Chemistry, 2019, 67, 10018-10031.	5. 2	37

#	Article	IF	Citations
73	Visible-light-initiated manganese-catalyzed Giese addition of unactivated alkyl iodides to electron-poor olefins. Chemical Communications, 2019, 55, 11707-11710.	4.1	37
74	Synthesis and insecticidal activity studies of novel phenylpyrazole derivatives containing arylimine or carbimidate moiety. Bioorganic and Medicinal Chemistry, 2019, 27, 115092.	3.0	8
75	Design, Synthesis, and <i>in Vitro</i> Biological Evaluation of 14-Hydroxytylophorine-dichloroacetate Co-drugs as Antiproliferative Agents. Chemical and Pharmaceutical Bulletin, 2019, 67, 1208-1210.	1.3	5
76	Visible-light-mediated Minisci C–H alkylation of heteroarenes with unactivated alkyl halides using O ₂ as an oxidant. Chemical Science, 2019, 10, 976-982.	7.4	109
77	Discovery of Pimprinine Alkaloids as Novel Agents against a Plant Virus. Journal of Agricultural and Food Chemistry, 2019, 67, 1795-1806.	5.2	59
78	NIS-mediated oxidative arene C(sp ²)–H amidation toward 3,4-dihydro-2(1 <i>H</i>)-quinolinone, phenanthridone, and <i>N</i> -fused spirolactam derivatives. Organic and Biomolecular Chemistry, 2019, 17, 6762-6770.	2.8	26
79	Direct α-Monofluoroalkenylation of Heteroatomic Alkanes via a Combination of Photoredox Catalysis and Hydrogen-Atom-Transfer Catalysis. Organic Letters, 2019, 21, 4585-4589.	4.6	51
80	Formation of Amidinyl Radicals via Visible-Light-Promoted Reduction of <i>N</i> -Phenyl Amidoxime Esters and Application to the Synthesis of 2-Substituted Benzimidazoles. Journal of Organic Chemistry, 2019, 84, 8646-8660.	3.2	22
81	Design, synthesis, and biological activity evaluation of (-)-6-O-desmethylantofine analogues as potent anti-cancer agents. Bioorganic and Medicinal Chemistry, 2019, 27, 3070-3081.	3.0	4
82	Metal-, Photocatalyst-, and Light-Free Minisci C–H Alkylation of <i>N</i> Heteroarenes with Oxalates. Journal of Organic Chemistry, 2019, 84, 7532-7540.	3.2	27
83	Trifluoromethylation and Monofluoroalkenylation of Alkenes through Radical–Radical Crossâ€Coupling. Chemistry - A European Journal, 2019, 25, 8686-8690.	3.3	34
84	Synthesis and Acaricidal- and Insecticidal-Activity Evaluation of Novel Oxazolines Containing Sulfiliminyl Moieties and Their Derivatives. Journal of Agricultural and Food Chemistry, 2019, 67, 4224-4231.	5 . 2	27
85	Design, Synthesis, Acaricidal Activities, and Structure–Activity Relationship Studies of Novel Oxazolines Containing Sulfonate Moieties. Journal of Agricultural and Food Chemistry, 2019, 67, 13544-13549.	5. 2	12
86	Radical alkylation of C(sp ³)â€"H bonds with diacyl peroxides under catalyst-free conditions. Chemical Communications, 2019, 55, 14813-14816.	4.1	16
87	Photoredox-Mediated Minisci C–H Alkylation Reactions between N-Heteroarenes and Alkyl Iodides with Peroxyacetate as a Radical Relay Initiator. Journal of Organic Chemistry, 2019, 84, 16245-16253.	3.2	12
88	Blue light photoredox-catalysed acetalation of alkynyl bromides. RSC Advances, 2019, 9, 36213-36216.	3.6	8
89	Oneâ€Pot Copperâ€Catalyzed Cascade Bicyclization Strategy for Synthesis of 2â€(1 H) Tj ETQq1 1 0.784314 Oxygen Source. Advanced Synthesis and Catalysis, 2019, 361, 490-495.	rgBT /Overlo 4.3	ock 10 Tf 50 7
90	Marine-Natural-Product Development: First Discovery of Nortopsentin Alkaloids as Novel Antiviral, Anti-phytopathogenic-Fungus, and Insecticidal Agents. Journal of Agricultural and Food Chemistry, 2018, 66, 4062-4072.	5.2	56

#	Article	IF	CITATIONS
91	Discovery of Glycosylated Genipin Derivatives as Novel Antiviral, Insecticidal, and Fungicidal Agents. Journal of Agricultural and Food Chemistry, 2018, 66, 1341-1348.	5.2	20
92	Design, Synthesis, and Antitobacco Mosaic Virus Activity of Water-Soluble Chiral Quaternary Ammonium Salts of Phenanthroindolizidines Alkaloids. Journal of Agricultural and Food Chemistry, 2018, 66, 780-788.	5.2	21
93	C(sp ³)â€"H Azidation Reaction: A Protocol for Preparation of Aminals. Journal of Organic Chemistry, 2018, 83, 4516-4524.	3.2	17
94	Hydration and Intramolecular Cyclization of Homopropargyl Sulfonamide Derivatives Catalyzed by Silver Hexafluoroantimonate(V): Synthesis of Structurally Diverse 2,3â€Dihydroâ€1 <i>H</i> â€Pyrroles. Advanced Synthesis and Catalysis, 2018, 360, 1077-1081.	4.3	11
95	Dehydrogenation of Nâ€Heterocycles by Superoxide Ion Generated through Singleâ€Electron Transfer. Chemistry - A European Journal, 2018, 24, 2065-2069.	3.3	34
96	Anti-TMV and Insecticidal Potential of Four Iridoid Glycosides from Gardenia Jasminoides Fruit. Chemical Research in Chinese Universities, 2018, 34, 697-699.	2.6	6
97	Naamines and Naamidines as Novel Agents against a Plant Virus and Phytopathogenic Fungi. Marine Drugs, 2018, 16, 311.	4.6	12
98	Photoredox-Mediated Direct Cross-Dehydrogenative Coupling of Heteroarenes and Amines. Organic Letters, 2018, 20, 5661-5665.	4.6	79
99	Visibleâ€Lightâ€Mediated Dearomatization/Cyanation Cascade Reaction of Indoles: Access to Highly Functionalized Spiroâ€Î³â€lactam Indolines with Two Contiguous Sterically Congested Quaternary Carbon Stereocenters. Advanced Synthesis and Catalysis, 2018, 360, 2879-2884.	4.3	35
100	Synthesis of <i>gem</i> â€Difluorinated Spiroâ€Î³â€lactam Oxindoles by Visibleâ€Lightâ€Induced Consecutive Difluoromethylative Dearomatization, Hydroxylation, and Oxidation. Chemistry - A European Journal, 2018, 24, 11283-11287.	3.3	44
101	<i>N</i> â€Arylamines Coupled with Aldehydes, Ketones, and Imines by Means of Photocatalytic Protonâ€Coupled Electron Transfer. Chemistry - A European Journal, 2018, 24, 9269-9273.	3.3	34
102	Arylpyrrole and fipronil analogues that inhibit the motility and/or development of Haemonchus contortus in vitro. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 379-385.	3.4	9
103	Marine Natural Products for Drug Discovery: First Discovery of Kealiinines A–C and Their Derivatives as Novel Antiviral and Antiphytopathogenic Fungus Agents. Journal of Agricultural and Food Chemistry, 2018, 66, 7310-7318.	5.2	28
104	Design, Synthesis, and Biological Activity of \hat{l}^2 -Carboline Analogues Containing Hydantoin, Thiohydantoin, and Urea Moieties. Journal of Agricultural and Food Chemistry, 2018, 66, 8253-8261.	5.2	27
105	Leveraging botanical resources for crop protection: the isolation, bioactivity and structure–activity relationships of lycoris alkaloids. Pest Management Science, 2018, 74, 2783-2792.	3.4	15
106	An Unprecedented Cyano-Induced Sodium Nitrite-Catalyzed C(sp3)-H and C(sp2)-H Coupling Reaction. Current Organic Synthesis, 2018, 15, 989-994.	1.3	3
107	Various Bioactivity and Relationship of Structure–Activity of Matrine Analogues. Journal of Agricultural and Food Chemistry, 2017, 65, 2039-2047.	5. 2	59
108	Antiviral activity and mechanism of gossypols: effects of the O ₂ Ë™ ^{â^'} production rate and the chirality. RSC Advances, 2017, 7, 10266-10277.	3.6	9

#	Article	IF	Citations
109	Pd-Catalyzed cycloisomerization/nucleophilic addition/reduction: an efficient method for the synthesis of spiro-pseudoindoxyls containing N,N′-ketal. Organic Chemistry Frontiers, 2017, 4, 1731-1735.	4.5	29
110	Merging Photoredox with BrÃ,nsted Acid Catalysis: The Crossâ€Dehydrogenative Câ^'O Coupling for sp ³ Câ^'H Bond Peroxidation. Chemistry - A European Journal, 2017, 23, 10871-10877.	3.3	19
111	6-OH-Phenanthroquinolizidine Alkaloid and Its Derivatives Exert Potent Anticancer Activity by Delaying S Phase Progression. Journal of Medicinal Chemistry, 2017, 60, 2764-2779.	6.4	27
112	Copper-Catalyzed Aerobic Oxidative [2 + 3] Cyclization/Aromatization Cascade Reaction: Atom-Economical Access to Tetrasubstituted 4,5-Biscarbonyl Imidazoles. Organic Letters, 2017, 19, 6056-6059.	4.6	32
113	Total synthesis of the reported structure of 13a-hydroxytylophorine. Scientific Reports, 2017, 7, 16916.	3.3	1
114	Assessing the anthelmintic activity of pyrazole-5-carboxamide derivatives against Haemonchus contortus. Parasites and Vectors, 2017, 10, 272.	2.5	25
115	Expanding indole diversity: direct 1-step synthesis of 1,2-fused indoles and spiroindolines from 2-halo anilines for fast SAR antiviral elucidation against tobacco mosaic virus (TMV). Molecular Diversity, 2017, 21, 61-68.	3.9	13
116	Design, synthesis, antiviral activity and mode of action of phenanthrene-containing <i>N</i> -heterocyclic compounds inspired by the phenanthroindolizidine alkaloid antofine. Pest Management Science, 2016, 72, 371-378.	3.4	17
117	Design, synthesis, insecticidal activity, and structure-activity relationship (SAR): studies of novel triazone derivatives containing a urea bridge group based on transient receptor potential (TRP) channels. Molecular Diversity, 2016, 20, 919-932.	3.9	4
118	Copperâ€Catalyzed Trifluoromethylation of Acrylamides Coupled with Indole Dearomatization: Access to Trifluoromethylâ€Substituted Spiro[indoleâ€3,3′â€pyrrolidine] Derivatives. Advanced Synthesis and Catalysis, 2016, 358, 561-566.	4.3	32
119	Design, Synthesis, Acaricidal/Insecticidal Activity, and Structure–Activity Relationship Studies of Novel Oxazolines Containing Sulfone/Sulfoxide Groups Based on the Sulfonylurea Receptor Protein-Binding Site. Journal of Agricultural and Food Chemistry, 2016, 64, 3034-3040.	5.2	42
120	Direct and Oxidant-Free Electron-Deficient Arylation of <i>N</i> -Acyl-Protected Tetrahydroisoquinolines. Organic Letters, 2016, 18, 4686-4689.	4.6	36
121	Design, Synthesis, and Biological Activities of Spirooxindoles Containing Acylhydrazone Fragment Derivatives Based on the Biosynthesis of Alkaloids Derived from Tryptophan. Journal of Agricultural and Food Chemistry, 2016, 64, 6508-6516.	5.2	52
122	Discovery of Topsentin Alkaloids and Their Derivatives as Novel Antiviral and Anti-phytopathogenic Fungus Agents. Journal of Agricultural and Food Chemistry, 2016, 64, 9143-9151.	5.2	42
123	Antiviral mechanism study of gossypol and its Schiff base derivatives based on reactive oxygen species (ROS). RSC Advances, 2016, 6, 87637-87648.	3.6	20
124	Copperâ€Catalyzed Trifluoromethylation and Bicyclizations of 1,7â€Enynes Leading to Fused Polycycles. Advanced Synthesis and Catalysis, 2016, 358, 3435-3442.	4.3	32
125	Skeletal modifications of \$\$upbeta \$\$ \hat{l}^2 -carboline alkaloids and their antiviral activity profile. Molecular Diversity, 2016, 20, 829-835.	3.9	3
126	First Discovery of Polycarpine, Polycarpaurines A and C, and Their Derivatives as Novel Antiviral and Antiphytopathogenic Fungus Agents. Journal of Agricultural and Food Chemistry, 2016, 64, 4264-4272.	5.2	20

#	Article	IF	CITATIONS
127	C ring may be dispensable for \hat{l}^2 -carboline: Design, synthesis, and bioactivities evaluation of tryptophan analog derivatives based on the biosynthesis of \hat{l}^2 -carboline alkaloids. Bioorganic and Medicinal Chemistry, 2016, 24, 462-473.	3.0	20
128	Synthesis and antiviral, insecticidal, and fungicidal activities of gossypol derivatives containing alkylimine, oxime or hydrazine moiety. Bioorganic and Medicinal Chemistry, 2016, 24, 474-483.	3.0	52
129	Additive effects on the improvement of insecticidal activity: Design, synthesis, and insecticidal activity of novel pymetrozine derivatives. Bioorganic and Medicinal Chemistry, 2016, 24, 391-402.	3.0	12
130	Frontispiece: Dirigent Proteins from Cotton ($\langle i \rangle$ Gossypium $\langle i \rangle$ sp.) for the Atropselective Synthesis of Gossypol. Angewandte Chemie - International Edition, 2015, 54, .	13.8	6
131	Synthesis of Structurally Diverse 2,3-Fused Indoles via Microwave-Assisted AgSbF6-Catalysed Intramolecular Difunctionalization of o-Alkynylanilines. Scientific Reports, 2015, 5, 13516.	3.3	13
132	Copperâ€Catalyzed Aryltrifluoromethylation of <i>N</i> â€Phenylcinnamamides: Access to Trifluoromethylated 3,4â€Dihydroquinolinâ€2(1 <i>H</i>)â€ones. Advanced Synthesis and Catalysis, 2015, 3 2464-2468.	3547.3	23
133	Dirigent Proteins from Cotton (<i>Gossypium</i> sp.) for the Atropselective Synthesis of Gossypol. Angewandte Chemie - International Edition, 2015, 54, 14660-14663.	13.8	60
134	Direct C–H Allylation of <i>N</i> -Acyl/Sulfonyl Tetrahydroisoquinolines and Analogues. Organic Letters, 2015, 17, 5714-5717.	4.6	42
135	Design, Synthesis, and Acaricidal/Insecticidal Activities of Oxazoline Derivatives Containing a Sulfur Ether Moiety. Journal of Agricultural and Food Chemistry, 2015, 63, 9690-9695.	5.2	37
136	First Discovery of Tylophora Alkaloids as HIV Inhibitors. Letters in Drug Design and Discovery, 2015, 12, 277-283.	0.7	6
137	3â€Hydrazido and 3â€Hydrazono Derivatives of Tenuazonic Acid and their Herbicide Evaluation. Journal of Heterocyclic Chemistry, 2014, 51, E197.	2.6	5
138	Studies on the Synthesis and Bioactivities of 4â€Amino Derivatives of Tetramic Acid. Journal of Heterocyclic Chemistry, 2014, 51, E25.	2.6	5
139	Design, synthesis, and biological evaluation of 2-benzylpyrroles and 2-benzoylpyrroles based on structures of insecticidal chlorfenapyr and natural pyrrolomycins. Molecular Diversity, 2014, 18, 593-598.	3.9	24
140	Mild and highly efficient metal-free oxidative α-cyanation of N-acyl/sulfonyl tetrahydroisoquinolines. RSC Advances, 2014, 4, 60075-60078.	3.6	38
141	Design, Synthesis, and Biological Activities of Aromatic Gossypol Schiff Base Derivatives. Journal of Agricultural and Food Chemistry, 2014, 62, 11080-11088.	5.2	69
142	Design, synthesis, anti-TMV, fungicidal, and insecticidal activity evaluation of 1,2,3,4-tetrahydro- $\hat{1}^2$ -carboline-3-carboxylic acid derivatives based on virus inhibitors of plant sources. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5228-5233.	2.2	46
143	Total synthesis of phenanthroindolizidine alkaloids via asymmetric deprotonation of N-Boc-pyrrolidine. RSC Advances, 2014, 4, 14979-14984.	3.6	13
144	D and E Rings May Not Be Indispensable for Antofine: Discovery of Phenanthrene and Alkylamine Chain Containing Antofine Derivatives as Novel Antiviral Agents against Tobacco Mosaic Virus (TMV) Based on Interaction of Antofine and TMV RNA. Journal of Agricultural and Food Chemistry, 2014, 62, 10393-10404.	5.2	29

#	Article	IF	CITATIONS
145	Synthesis and Biological Activities of 3â€Substituted Analogues of Tenuazonic Acid. Journal of Heterocyclic Chemistry, 2014, 51, E209.	2.6	5
146	Design, Synthesis, and Biological Activities of Novel 2â€Alkylpyrrole Derivatives. Journal of Heterocyclic Chemistry, 2014, 51, 1410-1414.	2.6	8
147	Design, Synthesis, and Antiviral, Fungicidal, and Insecticidal Activities of Tetrahydro- $\hat{1}^2$ -carboline-3-carbohydrazide Derivatives. Journal of Agricultural and Food Chemistry, 2014, 62, 9987-9999.	5.2	76
148	Synthesis and Antiviral and Fungicidal Activity Evaluation of β-Carboline, Dihydro-β-carboline, Tetrahydro-β-carboline Alkaloids, and Their Derivatives. Journal of Agricultural and Food Chemistry, 2014, 62, 1010-1018.	5.2	119
149	Design, Synthesis, Acaricidal Activity, and Mechanism of Oxazoline Derivatives Containing an Oxime Ether Moiety. Journal of Agricultural and Food Chemistry, 2014, 62, 3064-3072.	5.2	33
150	Design, Synthesis, and Insecticidal Evaluation of New Benzoylureas Containing Amide and Sulfonate Groups Based on the Sulfonylurea Receptor Protein Binding Site for Diflubenzuron and Glibenclamide. Journal of Agricultural and Food Chemistry, 2013, 61, 517-522.	5.2	21
151	The discovery of 3-(1-aminoethylidene)quinoline-2, 4(1H,3H)-dione derivatives as novel PSII electron transport inhibitors. Molecular Diversity, 2013, 17, 701-710.	3.9	29
152	Regioselective Oxidative Dehydrogenation under Nonenzymatic Conditions: A Synthetic Route to Gossypol. European Journal of Organic Chemistry, 2013, 2013, 8014-8021.	2.4	22
153	Design, synthesis and acaricidal/insecticidal activities of etoxazole analogues. New Journal of Chemistry, 2013, 37, 1803.	2.8	10
154	Different salt derivatives of phenanthroindolizidine alkaloids display different in vitro antitumor activity. New Journal of Chemistry, 2013, 37, 1817.	2.8	5
155	Design, Synthesis, and Insecticidal Activity of Novel Pyrazole Derivatives Containing α-Hydroxymethyl- <i>N</i> -benzyl Carboxamide, α-Chloromethyl- <i>N</i> -benzyl Carboxamide, and 4,5-Dihydrooxazole Moieties. Journal of Agricultural and Food Chemistry, 2012, 60, 1470-1479.	5.2	74
156	Therapeutic effects of a novel tylophorine analog, NKâ€007, on collagenâ€induced arthritis through suppressing tumor necrosis factor α production and Th17 cell differentiation. Arthritis and Rheumatism, 2012, 64, 2896-2906.	6.7	33
157	Design, Synthesis, and Antiviral Activity Evaluation of Phenanthrene-Based Antofine Derivatives. Journal of Agricultural and Food Chemistry, 2012, 60, 8544-8551.	5.2	33
158	First Discovery and Stucture-Activity Relationship Study of Phenanthroquinolizidines as Novel Antiviral Agents against Tobacco Mosaic Virus (TMV). PLoS ONE, 2012, 7, e52933.	2.5	33
159	Design, Synthesis, Antiviral Activity, and SARs of 14-Aminophenanthroindolizidines. Journal of Agricultural and Food Chemistry, 2012, 60, 5825-5831.	5.2	47
160	Synthesis and SAR studies of phenanthroindolizidine and phenanthroquinolizidine alkaloids as potent anti-tumor agents. European Journal of Medicinal Chemistry, 2012, 51, 250-258.	5.5	45
161	A Novel Sodium Nitriteâ€Catalyzed Oxidative Coupling for Constructing Polymethoxyphenanthrene Rings. Advanced Synthesis and Catalysis, 2012, 354, 383-387.	4.3	35
162	Design, Synthesis, and Biological Activities of Arylmethylamine Substituted Chlorotriazine and Methylthiotriazine Compounds. Journal of Agricultural and Food Chemistry, 2011, 59, 11711-11717.	5.2	61

#	Article	IF	CITATIONS
163	Design, Synthesis, and Insecticidal Evaluation of New Benzoylureas Containing Isoxazoline and Isoxazole Group. Journal of Agricultural and Food Chemistry, 2011, 59, 4851-4859.	5.2	65
164	Design, Synthesis, and Herbicidal Activities of Novel 2-Cyanoacrylates Containing Isoxazole Moieties. Journal of Agricultural and Food Chemistry, 2010, 58, 2685-2689.	5.2	57
165	Synthesis and biological evaluation of arylhydrazinocyanoacrylates and N-aryl pyrazolecarboxylates. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2953-2956.	2.2	11
166	Efficient Synthesis of $\langle i \rangle N \langle i \rangle$ -2-Aryl-1,2,3-Triazole Fluorophores via Post-Triazole Arylation. Organic Letters, 2008, 10, 5389-5392.	4.6	171
167	Synthesis, Herbicidal Activities, and 3D-QSAR of 2-Cyanoacrylates Containing Aromatic Methylamine Moieties. Journal of Agricultural and Food Chemistry, 2008, 56, 204-212.	5.2	35
168	Synthesis, Crystal Structure, and Biological Activities of 2-Cyanoacrylates Containing Furan or Tetrahydrofuran Moieties. Journal of Agricultural and Food Chemistry, 2007, 55, 3011-3017.	5.2	35
169	Synthesis and insecticidal evaluation ofN-tert-butyl-N′-thio[O-(1-methylthioethylimino)-N″-methylcarbamate]-N,N′-diacylhydrazines. Heteroatom Chemistry, 2007, 18, 631-636.	0.7	4
170	Binding Model and 3Dâ€QSAR of 3â€(2â€Chloropyridâ€5â€ylmethylamino)â€2â€cyanoacrylates as PSII Electron Transport Inhibitor. Chinese Journal of Chemistry, 2007, 25, 1135-1138.	4.9	13
171	Synthesis and herbicidal activity of 2-cyano-3-(2-fluoro-5-pyridyl)methylaminoacrylates. Journal of Fluorine Chemistry, 2005, 126, 345-348.	1.7	27
172	Synthesis of Substituted 2-Alkoxycarbonyl or 2-Cyano-1,3-butadienes. Synthetic Communications, 2003, 33, 3561-3566.	2.1	1
173	THE SYNTHESIS OF 2-ARYLIDENE-1,3-DITHIOLES CONTAINING PHOSPHONYL GROUP. Synthetic Communications, 2002, 32, 535-538.	2.1	5
174	Synthesis of 4-phosphonyl-1,3-dithioles and 1,3-dithiolanes via the Bu3P-CS2 adduct. Heteroatom Chemistry, 2002, 13, 633-637.	0.7	5
175	PREPARATION AND CYCLIZATION OF PHOSPHONYL CHLOROVINYLALDEHYDE. Phosphorus, Sulfur and Silicon and the Related Elements, 2000, 158, 179-186.	1.6	22
176	New Strategy for the Synthesis of Phosphonyl Pyrazoles. Synthetic Communications, 1999, 29, 4025-4033.	2.1	27
177	Chloroformylation of Ketophosphonates. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 147, 221-221.	1.6	O
178	THE SYNTHESIS OF 2-ARYLIDENE OR 2-ALKYLIDENE-1,3-DITHIOLES BY USING BU3P-CS2 ADDUCT. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 152, 185-190.	1.6	4
179	Synthesis of Indole―and Pyrroleâ€Fused Sevenâ€Membered Nitrogen Heterocycles via Acid–Base Switchable Cyclization Involving Cleavage of Amide C–N Bonds. Advanced Synthesis and Catalysis, 0, , .	4.3	5
180	Discovery of Indoloazepinone Analogues as Novel Antiviral, Antiphytopathogenic Fungus, and Insecticidal Agents. ACS Agricultural Science and Technology, 0, , .	2.3	2