List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7401583/publications.pdf Version: 2024-02-01

		41344	16650
127	16,118	49	123
papers	citations	h-index	g-index
132	132	132	11494
all docs	docs citations	times ranked	citing authors

IEDOME H KIM

#	Article	IF	CITATIONS
1	Vaccination with ALVAC and AIDSVAX to Prevent HIV-1 Infection in Thailand. New England Journal of Medicine, 2009, 361, 2209-2220.	27.0	2,748
2	Immune-Correlates Analysis of an HIV-1 Vaccine Efficacy Trial. New England Journal of Medicine, 2012, 366, 1275-1286.	27.0	1,699
3	Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys. Nature, 2014, 512, 74-77.	27.8	527
4	Looking beyond COVID-19 vaccine phase 3 trials. Nature Medicine, 2021, 27, 205-211.	30.7	473
5	Vaccine protection against acquisition of neutralization-resistant SIV challenges in rhesus monkeys. Nature, 2012, 482, 89-93.	27.8	452
6	Vaccine-Induced Env V1-V2 IgG3 Correlates with Lower HIV-1 Infection Risk and Declines Soon After Vaccination. Science Translational Medicine, 2014, 6, 228ra39.	12.4	412
7	Increased HIV-1 vaccine efficacy against viruses with genetic signatures in Env V2. Nature, 2012, 490, 417-420.	27.8	405
8	Vaccine Induction of Antibodies against a Structurally Heterogeneous Site of Immune Pressure within HIV-1 Envelope Protein Variable Regions 1 and 2. Immunity, 2013, 38, 176-186.	14.3	374
9	Vaccine-induced plasma IgA specific for the C1 region of the HIV-1 envelope blocks binding and effector function of IgG. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9019-9024.	7.1	371
10	Polyfunctional Fc-Effector Profiles Mediated by IgG Subclass Selection Distinguish RV144 and VAX003 Vaccines. Science Translational Medicine, 2014, 6, 228ra38.	12.4	367
11	Antibody-Dependent Cellular Cytotoxicity-Mediating Antibodies from an HIV-1 Vaccine Efficacy Trial Target Multiple Epitopes and Preferentially Use the VH1 Gene Family. Journal of Virology, 2012, 86, 11521-11532.	3.4	357
12	Protective Efficacy of a Global HIV-1 Mosaic Vaccine against Heterologous SHIV Challenges in Rhesus Monkeys. Cell, 2013, 155, 531-539.	28.9	334
13	Dissecting Polyclonal Vaccine-Induced Humoral Immunity against HIV Using Systems Serology. Cell, 2015, 163, 988-998.	28.9	326
14	Impact of Multi-Targeted Antiretroviral Treatment on Gut T Cell Depletion and HIV Reservoir Seeding during Acute HIV Infection. PLoS ONE, 2012, 7, e33948.	2.5	276
15	Magnitude and Breadth of the Neutralizing Antibody Response in the RV144 and Vax003 HIV-1 Vaccine Efficacy Trials. Journal of Infectious Diseases, 2012, 206, 431-441.	4.0	273
16	Rapid HIV RNA rebound after antiretroviral treatment interruption in persons durably suppressed in Fiebig I acute HIV infection. Nature Medicine, 2018, 24, 923-926.	30.7	263
17	Vaccine-Induced IgG Antibodies to V1V2 Regions of Multiple HIV-1 Subtypes Correlate with Decreased Risk of HIV-1 Infection. PLoS ONE, 2014, 9, e87572.	2.5	248
18	Ad26/MVA therapeutic vaccination with TLR7 stimulation in SIV-infected rhesus monkeys. Nature, 2016, 540, 284-287.	27.8	246

#	Article	IF	CITATIONS
19	COMPASS identifies T-cell subsets correlated with clinical outcomes. Nature Biotechnology, 2015, 33, 610-616.	17.5	232
20	Prospective Study of Acute HIV-1 Infection in Adults in East Africa and Thailand. New England Journal of Medicine, 2016, 374, 2120-2130.	27.0	229
21	Genetic impact of vaccination on breakthrough HIV-1 sequences from the STEP trial. Nature Medicine, 2011, 17, 366-371.	30.7	220
22	Initiation of ART during Early Acute HIV Infection Preserves Mucosal Th17 Function and Reverses HIV-Related Immune Activation. PLoS Pathogens, 2014, 10, e1004543.	4.7	218
23	Plasma IgG to Linear Epitopes in the V2 and V3 Regions of HIV-1 gp120 Correlate with a Reduced Risk of Infection in the RV144 Vaccine Efficacy Trial. PLoS ONE, 2013, 8, e75665.	2.5	214
24	Vaccine development for emerging infectious diseases. Nature Medicine, 2021, 27, 591-600.	30.7	213
25	Risk behaviour and time as covariates for efficacy of the HIV vaccine regimen ALVAC-HIV (vCP1521) and AIDSVAX B/E: a post-hoc analysis of the Thai phase 3 efficacy trial RV 144. Lancet Infectious Diseases, The, 2012, 12, 531-537.	9.1	201
26	Cross-Clade Ultrasensitive PCR-Based Assays To Measure HIV Persistence in Large-Cohort Studies. Journal of Virology, 2014, 88, 12385-12396.	3.4	198
27	Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition. Nature Medicine, 2016, 22, 762-770.	30.7	197
28	The Thai Phase III HIV Type 1 Vaccine Trial (RV144) Regimen Induces Antibodies That Target Conserved Regions Within the V2 Loop of gp120. AIDS Research and Human Retroviruses, 2012, 28, 1444-1457.	1.1	191
29	HIV-1 Vaccine-Induced C1 and V2 Env-Specific Antibodies Synergize for Increased Antiviral Activities. Journal of Virology, 2014, 88, 7715-7726.	3.4	169
30	Analysis of V2 Antibody Responses Induced in Vaccinees in the ALVAC/AIDSVAX HIV-1 Vaccine Efficacy Trial. PLoS ONE, 2013, 8, e53629.	2.5	165
31	Lessons from the RV144 Thai Phase III HIV-1 Vaccine Trial and the Search for Correlates of Protection. Annual Review of Medicine, 2015, 66, 423-437.	12.2	150
32	Antibodies with High Avidity to the gp120 Envelope Protein in Protection from Simian Immunodeficiency Virus SIV _{mac251} Acquisition in an Immunization Regimen That Mimics the RV-144 Thai Trial. Journal of Virology, 2013, 87, 1708-1719.	3.4	130
33	The Path to Group A Streptococcus Vaccines: World Health Organization Research and Development Technology Roadmap and Preferred Product Characteristics. Clinical Infectious Diseases, 2019, 69, 877-883.	5.8	122
34	The global burden and epidemiology of invasive non-typhoidal <i>Salmonella</i> infections. Human Vaccines and Immunotherapeutics, 2019, 15, 1421-1426.	3.3	118
35	Nonneutralizing Functional Antibodies: a New "Old―Paradigm for HIV Vaccines. Vaccine Journal, 2014, 21, 1023-1036.	3.1	107
36	Urgent needs of low-income and middle-income countries for COVID-19 vaccines and therapeutics. Lancet, The, 2021, 397, 562-564.	13.7	105

#	Article	IF	CITATIONS
37	Delayed differentiation of potent effector CD8 ⁺ T cells reducing viremia and reservoir seeding in acute HIV infection. Science Translational Medicine, 2017, 9, .	12.4	95
38	A novel acute HIV infection staging system based on 4thgeneration immunoassay. Retrovirology, 2013, 10, 56.	2.0	93
39	Virological and immunological characteristics of HIV-infected individuals at the earliest stage of infection. Journal of Virus Eradication, 2016, 2, 43-48.	0.5	73
40	Operation Warp Speed: implications for global vaccine security. The Lancet Global Health, 2021, 9, e1017-e1021.	6.3	72
41	Abundant HIV-infected cells in blood and tissues are rapidly cleared upon ART initiation during acute HIV infection. Science Translational Medicine, 2020, 12, .	12.4	69
42	Antibody Light-Chain-Restricted Recognition of the Site of Immune Pressure in the RV144 HIV-1 Vaccine Trial Is Phylogenetically Conserved. Immunity, 2014, 41, 909-918.	14.3	65
43	Rare HIV-1 transmitted/founder lineages identified by deep viral sequencing contribute to rapid shifts in dominant quasispecies during acute and early infection. PLoS Pathogens, 2017, 13, e1006510.	4.7	63
44	Prime–boost immunization with poxvirus or adenovirus vectors as a strategy to develop a protective vaccine for HIV-1. Expert Review of Vaccines, 2010, 9, 1055-1069.	4.4	62
45	Infectious Virion Capture by HIV-1 gp120-Specific IgG from RV144 Vaccinees. Journal of Virology, 2013, 87, 7828-7836.	3.4	59
46	Randomized, Double-Blind Evaluation of Late Boost Strategies for HIV-Uninfected Vaccine Recipients in the RV144 HIV Vaccine Efficacy Trial. Journal of Infectious Diseases, 2017, 215, 1255-1263.	4.0	57
47	Current and future cholera vaccines. Vaccine, 2020, 38, A118-A126.	3.8	57
48	Extended Evaluation of the Virologic, Immunologic, and Clinical Course of Volunteers Who Acquired HIV-1 Infection in a Phase III Vaccine Trial of ALVAC-HIV and AIDSVAX B/E. Journal of Infectious Diseases, 2013, 207, 1195-1205.	4.0	56
49	Impact of early cART in the gut during acute HIV infection. JCI Insight, 2016, 1, .	5.0	56
50	The Euvichol story – Development and licensure of a safe, effective and affordable oral cholera vaccine through global public private partnerships. Vaccine, 2018, 36, 6606-6614.	3.8	56
51	Vaccine-induced Human Antibodies Specific for the Third Variable Region of HIV-1 gp120 Impose Immune Pressure on Infecting Viruses. EBioMedicine, 2014, 1, 37-45.	6.1	55
52	V1V2-specific complement activating serum IgG as a correlate of reduced HIV-1 infection risk in RV144. PLoS ONE, 2017, 12, e0180720.	2.5	55
53	T cell-oriented strategies for controlling the COVID-19 pandemic. Nature Reviews Immunology, 2021, 21, 687-688.	22.7	54
54	Structure-guided drug design identifies a BRD4-selective small molecule that suppresses HIV. Journal of Clinical Investigation, 2019, 129, 3361-3373.	8.2	54

#	Article	IF	CITATIONS
55	Comprehensive Sieve Analysis of Breakthrough HIV-1 Sequences in the RV144 Vaccine Efficacy Trial. PLoS Computational Biology, 2015, 11, e1003973.	3.2	51
56	Markers of HIV reservoir size and immune activation after treatment in acute HIV infection with and without raltegravir and maraviroc intensification. Journal of Virus Eradication, 2015, 1, 116-122.	0.5	50
57	HIV-1 infections with multiple founders are associated with higher viral loads than infections with single founders. Nature Medicine, 2015, 21, 1139-1141.	30.7	50
58	Preferential infection of human Ad5-specific CD4 T cells by HIV in Ad5 naturally exposed and recombinant Ad5-HIV vaccinated individuals. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13439-13444.	7.1	49
59	Acute HIV infection detection and immediate treatment estimated to reduce transmission by 89% among men who have sex with men in Bangkok. Journal of the International AIDS Society, 2017, 20, 21708.	3.0	48
60	HIV-1-Specific IgA Monoclonal Antibodies from an HIV-1 Vaccinee Mediate Galactosylceramide Blocking and Phagocytosis. Journal of Virology, 2018, 92, .	3.4	45
61	Global public health security and justice for vaccines and therapeutics in the COVID-19 pandemic. EClinicalMedicine, 2021, 39, 101053.	7.1	45
62	Virological and immunological characteristics of HIV-infected individuals at the earliest stage of infection. Journal of Virus Eradication, 2016, 2, 43-48.	0.5	45
63	Review on the Recent Advances on Typhoid Vaccine Development and Challenges Ahead. Clinical Infectious Diseases, 2020, 71, S141-S150.	5.8	41
64	Identification of New Regions in HIV-1 gp120 Variable 2 and 3 Loops that Bind to α4β7 Integrin Receptor. PLoS ONE, 2015, 10, e0143895.	2.5	41
65	Heterologous Prime-Boost Regimens Using rAd35 and rMVA Vectors Elicit Stronger Cellular Immune Responses to HIV Proteins Than Homologous Regimens. PLoS ONE, 2012, 7, e45840.	2.5	40
66	Distinct gene-expression profiles associated with the susceptibility of pathogen-specific CD4 T cells to HIV-1 infection. Blood, 2013, 121, 1136-1144.	1.4	38
67	Comparison of Antibody Responses Induced by RV144, VAX003, and VAX004 Vaccination Regimens. AIDS Research and Human Retroviruses, 2017, 33, 410-423.	1.1	38
68	Boosting of HIV envelope CD4 binding site antibodies with long variable heavy third complementarity determining region in the randomized double blind RV305 HIV-1 vaccine trial. PLoS Pathogens, 2017, 13, e1006182.	4.7	38
69	Safety and immunogenicity of a Vi-DT typhoid conjugate vaccine: Phase I trial in Healthy Filipino adults and children. Vaccine, 2018, 36, 3794-3801.	3.8	36
70	Markers of HIV reservoir size and immune activation after treatment in acute HIV infection with and without raltegravir and maraviroc intensification. Journal of Virus Eradication, 2015, 1, 116-122.	0.5	36
71	Current approaches to HIV vaccine development: a narrative review. Journal of the International AIDS Society, 2021, 24, e25793.	3.0	35
72	Novel prime-boost vaccine strategies against HIV-1. Expert Review of Vaccines, 2019, 18, 765-779.	4.4	34

#	Article	IF	CITATIONS
73	Comparative safety of mRNA COVIDâ€19 vaccines to influenza vaccines: A pharmacovigilance analysis using WHO international database. Journal of Medical Virology, 2022, 94, 1085-1095.	5.0	34
74	Cryptic Determinant of $\hat{I}\pm4\hat{I}^2$ 7 Binding in the V2 Loop of HIV-1 gp120. PLoS ONE, 2014, 9, e108446.	2.5	33
75	Priming and Activation of Inflammasome by Canarypox Virus Vector ALVAC via the cGAS/IFI16–STING–Type I IFN Pathway and AIM2 Sensor. Journal of Immunology, 2017, 199, 3293-3305.	0.8	33
76	Late boosting of the RV144 regimen with AIDSVAX B/E and ALVAC-HIV in HIV-uninfected Thai volunteers: a double-blind, randomised controlled trial. Lancet HIV,the, 2020, 7, e238-e248.	4.7	33
77	Neglecting the neglected: the objective evidence of underfunding in rheumatic heart disease. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2019, 113, 287-290.	1.8	31
78	HIV-1 vaccines. Human Vaccines and Immunotherapeutics, 2014, 10, 1734-1746.	3.3	30
79	HIV Epidemic in Asia: Implications for HIV Vaccine and Other Prevention Trials. AIDS Research and Human Retroviruses, 2015, 31, 1060-1076.	1.1	29
80	Prospects for a globally effective HIV-1 vaccine. Vaccine, 2015, 33, D4-D12.	3.8	28
81	Specific Antibody Responses to Vaccination with Bivalent CM235/SF2 gp120: Detection of Homologous and Heterologous Neutralizing Antibody to Subtype E (CRF01.AE) HIV Type 1. AIDS Research and Human Retroviruses, 2003, 19, 807-816.	1.1	27
82	Integrated systems approach defines the antiviral pathways conferring protection by the RV144 HIV vaccine. Nature Communications, 2019, 10, 863.	12.8	27
83	Sieve analysis of breakthrough HIV-1 sequences in HVTN 505 identifies vaccine pressure targeting the CD4 binding site of Env-gp120. PLoS ONE, 2017, 12, e0185959.	2.5	27
84	Distinct susceptibility of HIV vaccine vector-induced CD4 T cells to HIV infection. PLoS Pathogens, 2018, 14, e1006888.	4.7	26
85	Expansion of Inefficient HIV-Specific CD8 T Cells during Acute Infection. Journal of Virology, 2016, 90, 4005-4016.	3.4	25
86	Supply and delivery of vaccines for global health. Current Opinion in Immunology, 2021, 71, 13-20.	5.5	25
87	Sequential Dysfunction and Progressive Depletion of Candida albicans-Specific CD4 T Cell Response in HIV-1 Infection. PLoS Pathogens, 2016, 12, e1005663.	4.7	25
88	Molecular dating and viral load growth rates suggested that the eclipse phase lasted about a week in HIV-1 infected adults in East Africa and Thailand. PLoS Pathogens, 2020, 16, e1008179.	4.7	24
89	The epidemiology of dengue outbreaks in 2016 and 2017 in Ouagadougou, Burkina Faso. Heliyon, 2020, 6, e04389.	3.2	23
90	Effect of cytokines on Siglec-1 and HIV-1 entry in monocyte–derived macrophages: the importance of HIV-1 envelope V1V2 region. Journal of Leukocyte Biology, 2016, 99, 1089-1106.	3.3	19

#	Article	IF	CITATIONS
91	Vaccination against SARS-CoV-2 and disease enhancement – knowns and unknowns. Expert Review of Vaccines, 2020, 19, 691-698.	4.4	19
92	Boosting with AIDSVAX B/E Enhances Env Constant Region 1 and 2 Antibody-Dependent Cellular Cytotoxicity Breadth and Potency. Journal of Virology, 2020, 94, .	3.4	19
93	HIV vaccine delayed boosting increases Env variable region 2–specific antibody effector functions. JCI Insight, 2020, 5, .	5.0	18
94	HVTN 097: Evaluation of the RV144 Vaccine Regimen in HIV Uninfected South African Adults. AIDS Research and Human Retroviruses, 2014, 30, A33-A34.	1.1	17
95	Accelerating the development of a group A <i>Streptococcus</i> vaccine: an urgent public health need. Clinical and Experimental Vaccine Research, 2016, 5, 101.	2.2	16
96	Deep Sequencing Reveals Central Nervous System Compartmentalization in Multiple Transmitted/Founder Virus Acute HIV-1 Infection. Cells, 2019, 8, 902.	4.1	15
97	HLA class I, KIR, and genome-wide SNP diversity in the RV144 Thai phase 3 HIV vaccine clinical trial. Immunogenetics, 2014, 66, 299-310.	2.4	14
98	Characterization of HIV-1 gp120 antibody specificities induced in anogenital secretions of RV144 vaccine recipients after late boost immunizations. PLoS ONE, 2018, 13, e0196397.	2.5	14
99	Immunogenicity, safety and reactogenicity of a Phase II trial of Vi-DT typhoid conjugate vaccine in healthy Filipino infants and toddlers: A preliminary report. Vaccine, 2020, 38, 4476-4483.	3.8	14
100	Safety and immunogenicity of Vi-DT conjugate vaccine among 6-23-month-old children: Phase II, randomized, dose-scheduling, observer-blind Study. EClinicalMedicine, 2020, 27, 100540.	7.1	14
101	Structural analysis of the unmutated ancestor of the HIV-1 envelope V2 region antibody CH58 isolated from an RV144 vaccine efficacy trial vaccinee. EBioMedicine, 2015, 2, 713-722.	6.1	13
102	First clinical trial of a MERS coronavirus DNA vaccine. Lancet Infectious Diseases, The, 2019, 19, 924-925.	9.1	13
103	RV144 HIV-1 vaccination impacts post-infection antibody responses. PLoS Pathogens, 2020, 16, e1009101.	4.7	13
104	Impact of HIV-1 Backbone on Neutralization Sensitivity: Neutralization Profiles of Heterologous Envelope Glycoproteins Expressed in Native Subtype C and CRF01_AE Backbone. PLoS ONE, 2013, 8, e76104.	2.5	12
105	An overview of Vaxchora TM , a live attenuated oral cholera vaccine. Human Vaccines and Immunotherapeutics, 2020, 16, 42-50.	3.3	12
106	Protein-based, but not viral vector alone, HIV vaccine boosting drives an IgG1-biased polyfunctional humoral immune response. JCI Insight, 2020, 5, .	5.0	12
107	HIV-specific Antibody in Rectal Secretions Following Late Boosts in RV144 Participants (RV305). AIDS Research and Human Retroviruses, 2014, 30, A33-A33.	1.1	11
108	Determining the Best Immunization Strategy for Protecting African Children Against Invasive Salmonella Disease. Clinical Infectious Diseases, 2018, 67, 1824-1830.	5.8	11

#	Article	IF	CITATIONS
109	Predictors of durable immune responses six months after the last vaccination in preventive HIV vaccine trials. Vaccine, 2017, 35, 1184-1193.	3.8	9
110	SARS-CoV-2 vaccine development, access, and equity. Journal of Experimental Medicine, 2020, 217, .	8.5	9
111	HIV Susceptibility of human antigen-specific CD4 T cells in AIDS pathogenesis and vaccine response. Expert Review of Vaccines, 2016, 15, 709-717.	4.4	7
112	Modulation of Vaccine-Induced CD4 T Cell Functional Profiles by Changes in Components of HIV Vaccine Regimens in Humans. Journal of Virology, 2018, 92, .	3.4	7
113	Next-generation sequencing of HIV-1 single genome amplicons. Biomolecular Detection and Quantification, 2019, 17, 100080.	7.0	7
114	Achieving global equity for COVID-19 vaccines: Stronger international partnerships and greater advocacy and solidarity are needed. PLoS Medicine, 2021, 18, e1003772.	8.4	7
115	Nautilus: A Bioinformatics Package for the Analysis of HIV Type 1 Targeted Deep Sequencing Data. AIDS Research and Human Retroviruses, 2013, 29, 1361-1364.	1.1	6
116	Letter to the Editor on: The RV144 vaccine regimen was not associated with enhancement of infection. Human Vaccines and Immunotherapeutics, 2015, 11, 1036-1037.	3.3	6
117	Targeted deep sequencing of HIV-1 using the IonTorrentPGM platform. Journal of Virological Methods, 2014, 205, 7-16.	2.1	5
118	Challenges and opportunities in setting up a phase III vaccine clinical trial in resource limited settings: Experience from Nepal. Human Vaccines and Immunotherapeutics, 2021, 17, 2149-2157.	3.3	5
119	Two Middle East respiratory syndrome vaccines: first step for other coronavirus vaccines?. Lancet Infectious Diseases, The, 2020, 20, 760-761.	9.1	4
120	Factors influencing estimates of HIV-1 infection timing using BEAST. PLoS Computational Biology, 2021, 17, e1008537.	3.2	4
121	Standardization of a cytometric p24-capture bead-assay for the detection of main HIV-1 subtypes Journal of Virological Methods, 2016, 230, 45-52.	2.1	3
122	Geographical distribution of risk factors for invasive non-typhoidal Salmonella at the subnational boundary level in sub-Saharan Africa. BMC Infectious Diseases, 2021, 21, 529.	2.9	3
123	RV144 vaccine imprinting constrained HIV-1 evolution following breakthrough infection. Virus Evolution, 2021, 7, veab057.	4.9	2
124	Immune persistence and response to booster dose of Vi-DT vaccine at 27.5 months post-first dose. Npj Vaccines, 2022, 7, 12.	6.0	2
125	A Phase 3, Multicenter, Randomized, Controlled Trial to Evaluate Immune Equivalence and Safety of Multidose and Single-dose Formulations of Vi-DT Typhoid Conjugate Vaccine in Healthy Filipino Individuals 6 Months to 45 Years of Age. The Lancet Regional Health - Western Pacific, 2022, 24, 100484.	2.9	1
126	The emergence of a South-South and Triangular Cooperation approach to vaccine development. Journal of Global Health Science, 2021, 3, .	0.3	0

#	Article	IF	CITATIONS
127	Public Health Value of a Hypothetical Pneumococcal Conjugate Vaccine (PCV) Introduction: A Case Study. Vaccines, 2022, 10, 950.	4.4	Ο