Anita Chong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7400808/publications.pdf

Version: 2024-02-01

205 papers 8,626 citations

³⁸⁷⁴² 50 h-index

84 g-index

207 all docs

 $\begin{array}{c} 207 \\ \\ \text{docs citations} \end{array}$

times ranked

207

8969 citing authors

#	Article	IF	CITATIONS
1	Impaired T-Lymphocyte Responses During Childhood <i>Staphylococcus aureus</i> Infection. Journal of Infectious Diseases, 2022, 225, 177-185.	4.0	3
2	Sex and gender as predictors for allograft and patient-relevant outcomes after kidney transplantation. The Cochrane Library, 2022, 2022, .	2.8	0
3	The Women of FOCIS: Promoting Equality and Inclusiveness in a Professional Federation of Clinical Immunology Societies. Frontiers in Immunology, 2022, 13, 816535.	4.8	0
4	Toward an understanding of allogeneic conflict in pregnancy and transplantation. Journal of Experimental Medicine, 2022, 219, .	8.5	10
5	Oral alloantigen exposure promotes donor-specific tolerance in a mouse model of minor-mismatched skin transplantation. American Journal of Transplantation, 2022, 22, 2348-2359.	4.7	2
6	Semiallogeneic Pregnancy: A Paradigm Change for T-cell Transplantation Tolerance. Transplantation, 2022, 106, 1098-1100.	1.0	3
7	Linked sensitization by memory CD4+ T cells prevents costimulation blockade–induced transplantation tolerance. JCI Insight, 2022, 7, .	5.0	2
8	Host-versus-commensal immune responses participate in the rejection of colonized solid organ transplants. Journal of Clinical Investigation, 2022, 132, .	8.2	9
9	Pregnancy-induced humoral sensitization overrides T cell tolerance to fetus-matched allografts in mice. Journal of Clinical Investigation, 2021, 131, .	8.2	22
10	Sex matters: COVID-19 in kidney transplantation. Kidney International, 2021, 99, 555-558.	5.2	6
11	Regulation of Alloantibody Responses. Frontiers in Cell and Developmental Biology, 2021, 9, 706171.	3.7	5
12	Innate-like self-reactive B cells infiltrate human renal allografts during transplant rejection. Nature Communications, 2021, 12, 4372.	12.8	34
13	Incorporation of sex and gender guidelines into transplantation literature. Transplantation, 2021, Publish Ahead of Print, e261-e262.	1.0	2
14	Recommended Treatment for Antibody-mediated Rejection After Kidney Transplantation: The 2019 Expert Consensus From the Transplantion Society Working Group. Transplantation, 2020, 104, 911-922.	1.0	172
15	The First ITS Meeting. Transplantation, 2020, 104, 1114-1116.	1.0	3
16	Adjuvant-free nanofiber vaccine induces in situ lung dendritic cell activation and T _H 17 responses. Science Advances, 2020, 6, eaba0995.	10.3	33
17	Reversing donor-specific antibody responses and antibody-mediated rejection with bortezomib and belatacept in mice and kidney transplant recipients. American Journal of Transplantation, 2020, 20, 2675-2685.	4.7	35
18	Mechanisms of organ transplant injury mediated by B cells and antibodies: Implications for antibody-mediated rejection. American Journal of Transplantation, 2020, 20, 23-32.	4.7	34

#	Article	IF	Citations
19	Desensitizing highly sensitized heart transplant candidates with the combination of belatacept and proteasome inhibition. American Journal of Transplantation, 2020, 20, 3620-3630.	4.7	27
20	Enabling sublingual peptide immunization with molecular self-assemblies. Biomaterials, 2020, 241, 119903.	11.4	32
21	B cells as antigen-presenting cells in transplantation rejection and tolerance. Cellular Immunology, 2020, 349, 104061.	3.0	27
22	Sensitization in transplantation: Assessment of risk (STAR) 2019 Working Group Meeting Report. American Journal of Transplantation, 2020, 20, 2652-2668.	4.7	70
23	Inhibition of protective immunity against <i>Staphylococcus aureus</i> ii> infection by MHC-restricted immunodominance is overcome by vaccination. Science Advances, 2020, 6, eaaw7713.	10.3	13
24	Transplantation tolerance modifies donor-specific B cell fate to suppress de novo alloreactive B cells. Journal of Clinical Investigation, 2020, 130, 3453-3466.	8.2	15
25	Urinary nanosensors of early transplant rejection. Nature Biomedical Engineering, 2019, 3, 251-252.	22.5	0
26	Outstanding questions in transplantation: B cells, alloantibodies, and humoral rejection. American Journal of Transplantation, 2019, 19, 2155-2163.	4.7	39
27	The pursuit of transplantation tolerance: new mechanistic insights. Cellular and Molecular Immunology, 2019, 16, 324-333.	10.5	11
28	Skin-restricted commensal colonization accelerates skin graft rejection. JCI Insight, 2019, 4, .	5.0	21
29	Resilience of T cell-intrinsic dysfunction in transplantation tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23682-23690.	7.1	13
30	ITS finally here! The first International Transplant Science meeting jointly organized by AST, ESOT, and TTS. Transplantation, 2019, 103, 1975-1976.	1.0	0
31	Desensitization in the Era of Precision Medicine: Moving From the Bench to Bedside. Transplantation, 2019, 103, 1574-1581.	1.0	8
32	B Cell Recruitment Follows Kidney Injury and Maladaptive Repair. Transplantation, 2019, 103, 1527-1529.	1.0	1
33	New insights into the development of B cell responses: Implications for solid organ transplantation. Human Immunology, 2019, 80, 378-384.	2.4	14
34	Intranasal delivery of adjuvant-free peptide nanofibers elicits resident CD8+ T cell responses. Journal of Controlled Release, 2018, 282, 120-130.	9.9	77
35	Heterogeneity of memory B cells. American Journal of Transplantation, 2018, 18, 779-784.	4.7	18
36	MyD88 in antigen-presenting cells is not required for CD4 ⁺ T-cell responses during peptide nanofiber vaccination. MedChemComm, 2018, 9, 138-148.	3.4	5

#	Article	IF	Citations
37	An optimized protocol to quantify signaling in human transitional B cells by phospho flow cytometry. Journal of Immunological Methods, 2018, 463, 112-121.	1.4	3
38	Equal Expansion of Endogenous Transplant-Specific Regulatory T Cell and Recruitment Into the Allograft During Rejection and Tolerance. Frontiers in Immunology, 2018, 9, 1385.	4.8	14
39	Distinct Graft-Specific TCR Avidity Profiles during Acute Rejection and Tolerance. Cell Reports, 2018, 24, 2112-2126.	6.4	17
40	Erosion of Transplantation Tolerance After Infection. American Journal of Transplantation, 2017, 17, 81-90.	4.7	32
41	Transplantation tolerance: don't forget about the B cells. Clinical and Experimental Immunology, 2017, 189, 171-180.	2.6	21
42	Evolving Approaches in the Identification of Allograft-Reactive T and B Cells in Mice and Humans. Transplantation, 2017, 101, 2671-2681.	1.0	9
43	Active immunotherapy for TNF-mediated inflammation using self-assembled peptide nanofibers. Biomaterials, 2017, 149, 1-11.	11.4	61
44	The IRF4 Gene Regulatory Module Functions as a Read-Write Integrator to Dynamically Coordinate TÂHelper Cell Fate. Immunity, 2017, 47, 481-497.e7.	14.3	104
45	Transplantation tolerance after allograft rejection. Current Opinion in Organ Transplantation, 2017, 22, 64-70.	1.6	5
46	Fifty Shades of Transplantation Tolerance: Beyond a Binary Tolerant/Non-Tolerant Paradigm. Current Transplantation Reports, 2017, 4, 262-269.	2.0	5
47	Alone Again, Naturally. Transplantation, 2017, 101, 1956-1958.	1.0	3
48	Belatacept Does Not Inhibit Follicular T Cell-Dependent B-Cell Differentiation in Kidney Transplantation. Frontiers in Immunology, 2017, 8, 641.	4.8	25
49	Successful Treatment of T Cell-Mediated Acute Rejection with Delayed CTLA4-lg in Mice. Frontiers in Immunology, 2017, 8, 1169.	4.8	22
50	CTLA4-lg in combination with FTY720 promotes allograft survival in sensitized recipients. JCI Insight, 2017, 2, .	5.0	11
51	Importance of B Lymphocytes and the IgG-Binding Protein Sbi in Staphylococcus aureus Skin Infection. Pathogens, 2016, 5, 12.	2.8	9
52	Adoptive Transfer of Tracer-Alloreactive CD4+ T Cell Receptor Transgenic T Cells Alters the Endogenous Immune Response to an Allograft. American Journal of Transplantation, 2016, 16, 2842-2853.	4.7	9
53	Tracking of TCR-Transgenic T Cells Reveals That Multiple Mechanisms Maintain Cardiac Transplant Tolerance in Mice. American Journal of Transplantation, 2016, 16, 2854-2864.	4.7	19
54	Delayed Cytotoxic T Lymphocyte–Associated Protein 4–Immunoglobulin Treatment Reverses Ongoing Alloantibody Responses and Rescues Allografts From Acute Rejection. American Journal of Transplantation, 2016, 16, 2312-2323.	4.7	45

#	Article	IF	CITATIONS
55	High-Fat Diet–Induced Obesity Enhances Allograft Rejection. Transplantation, 2016, 100, 1015-1021.	1.0	30
56	Self-Antigen-Driven Thymic B Cell Class Switching Promotes T Cell Central Tolerance. Cell Reports, 2016, 17, 387-398.	6.4	31
57	Impact of <i>Staphylococcus aureus</i> USA300 Colonization and Skin Infections on Systemic Immune Responses in Humans. Journal of Immunology, 2016, 197, 1118-1126.	0.8	20
58	From Pipe Dream to Donor-Specific PC Elimination. Transplantation, 2016, 100, 2238-2239.	1.0	1
59	Tracing Donor-MHC Class II Reactive B cells in Mouse Cardiac Transplantation. Transplantation, 2016, 100, 1683-1691.	1.0	26
60	Virtual Global Transplant Laboratory Standard Operating Protocol for Donor Alloantigen-specific Interferon-gamma ELISPOT Assay. Transplantation Direct, 2016, 2, e111.	1.6	1
61	The composition of the microbiota modulates allograft rejection. Journal of Clinical Investigation, 2016, 126, 2736-2744.	8.2	86
62	Establishment of a Global Virtual Laboratory for Transplantation. Transplantation, 2015, 99, 381-384.	1.0	10
63	Proteomic Identification of <i>saeRS</i> -Dependent Targets Critical for Protective Humoral Immunity against Staphylococcus aureus Skin Infection. Infection and Immunity, 2015, 83, 3712-3721.	2.2	11
64	Spontaneous restoration of transplantation tolerance after acute rejection. Nature Communications, 2015, 6, 7566.	12.8	45
65	The influence of the microbiota on the immune response to transplantation. Current Opinion in Organ Transplantation, 2015, 20, 1-7.	1.6	28
66	Memory B Cells in Transplantation. Transplantation, 2015, 99, 21-28.	1.0	44
67	Cutting Edge: CTLA-4lg Inhibits Memory B Cell Responses and Promotes Allograft Survival in Sensitized Recipients. Journal of Immunology, 2015, 195, 4069-4073.	0.8	66
68	Gut Microbiota Elicits a Protective Immune Response against Malaria Transmission. Cell, 2014, 159, 1277-1289.	28.9	279
69	New Kid on the Pretransplant Block: IgG Recognizing Apoptotic Cells. American Journal of Transplantation, 2014, 14, 1477-1478.	4.7	0
70	Molecular phenotyping of T-cell-mediated rejection. Nature Reviews Nephrology, 2014, 10, 678-680.	9.6	10
71	Mechanisms and Consequences of Injury and Repair in Older Organ Transplants. Transplantation, 2014, 97, 1091-1099.	1.0	35
72	Protective Immunity against Recurrent Staphylococcus aureus Skin Infection Requires Antibody and Interleukin-17A. Infection and Immunity, 2014, 82, 2125-2134.	2.2	100

#	Article	IF	Citations
73	Transplantation tolerance and its outcome during infections and inflammation. Immunological Reviews, 2014, 258, 80-101.	6.0	26
74	Immune complex formation and in situ B-cell clonal expansion in human cerebral cavernous malformations. Journal of Neuroimmunology, 2014, 272, 67-75.	2.3	26
75	Gradated assembly of multiple proteins into supramolecular nanomaterials. Nature Materials, 2014, 13, 829-836.	27.5	228
76	Titrating Tâ€Cell Epitopes within Selfâ€Assembled Vaccines Optimizes CD4+ Helper T Cell and Antibody Outputs. Advanced Healthcare Materials, 2014, 3, 1898-1908.	7.6	113
77	Impact of Immunosuppression on Recall Immune Responses to Influenza Vaccination in Stable Renal Transplant Recipients. Transplantation, 2014, 97, 846-853.	1.0	34
78	Microbes and Allogeneic Transplantation. Transplantation, 2014, 97, 5-11.	1.0	17
79	The use of self-adjuvanting nanofiber vaccines to elicit high-affinity B cell responses to peptide antigens without inflammation. Biomaterials, 2013, 34, 8776-8785.	11.4	150
80	Transcriptional Regulation of Germinal Center B and Plasma Cell Fates by Dynamical Control of IRF4. Immunity, 2013, 38, 918-929.	14.3	356
81	B cells assist allograft rejection in the deficiency of protein kinase c-theta. Transplant International, 2013, 26, 919-927.	1.6	2
82	Literature WatchImplications for transplantation. American Journal of Transplantation, 2013, 13, 1943-1943.	4.7	0
83	Reversing Endogenous Alloreactive B Cell GC Responses With Anti-CD154 or CTLA-4lg. American Journal of Transplantation, 2013, 13, 2280-2292.	4.7	66
84	A Selfâ€Adjuvanting Supramolecular Vaccine Carrying a Folded Protein Antigen. Advanced Healthcare Materials, 2013, 2, 1114-1119.	7.6	92
85	Lessons and Limits of Mouse Models. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a015495-a015495.	6.2	44
86	Enhancing Pancreatic Beta-Cell Regeneration In Vivo with Pioglitazone and Alogliptin. PLoS ONE, 2013, 8, e65777.	2.5	15
87	Local Inflammation Exacerbates the Severity of Staphylococcus aureus Skin Infection. PLoS ONE, 2013, 8, e69508.	2.5	32
88	Three Strikes and You're Cured. Science Translational Medicine, 2012, 4, 133fs12.	12.4	0
89	Modulating Adaptive Immune Responses to Peptide Self-Assemblies. ACS Nano, 2012, 6, 1557-1564.	14.6	243
90	Experimental models of B cell tolerance in transplantation. Seminars in Immunology, 2012, 24, 77-85.	5.6	8

#	Article	IF	Citations
91	The impact of infection and tissue damage in solid-organ transplantation. Nature Reviews Immunology, 2012, 12, 459-471.	22.7	128
92	Self-assembled peptide nanofibers raising durable antibody responses against a malaria epitope. Biomaterials, 2012, 33, 6476-6484.	11.4	160
93	"Tip-Toeing―to an Assay for Transplantation Tolerance?. American Journal of Transplantation, 2012, 12, 519-520.	4.7	0
94	Plasma cell densities and glomerular filtration rates predict renal allograft outcomes following acute rejection. Transplant International, 2012, 25, 1050-1058.	1.6	11
95	Making a B-Line for Transplantation Tolerance. American Journal of Transplantation, 2011, 11, 420-421.	4.7	6
96	IL-6 Induced by Staphylococcus aureus Infection Prevents the Induction of Skin Allograft Acceptance in Mice. American Journal of Transplantation, 2011, 11, 936-946.	4.7	63
97	Matchmaking the B-Cell Signature of Tolerance to Regulatory B Cells. American Journal of Transplantation, 2011, 11, 2555-2560.	4.7	22
98	Alloantibodies Prevent the Induction of Transplantation Tolerance by Enhancing Alloreactive T Cell Priming. Journal of Immunology, 2011, 186, 214-221.	0.8	41
99	B AND PLASMA CELLS, BUT NOT C4D, IN RENAL BIOPSIES DURING ACUTE REJECTION ARE SENSITIVE MARKERS OF POOR GRAFT OUTCOME. Transplantation, 2010, 90, 367.	1.0	0
100	Infection with the Intracellular Bacterium, Listeria monocytogenes, Overrides Established Tolerance in a Mouse Cardiac Allograft Model. American Journal of Transplantation, 2010, 10, 1524-1533.	4.7	74
101	Seeing is believing: How the MIP-luc mouse can advance the field of islet transplantation and \hat{l}^2 -cell regeneration. Islets, 2010, 2, 261-262.	1.8	2
102	Glycemic Control Promotes Pancreatic Beta-Cell Regeneration in Streptozotocin-Induced Diabetic Mice. PLoS ONE, 2010, 5, e8749.	2.5	41
103	TLR Signals Promote IL-6/IL-17-Dependent Transplant Rejection. Journal of Immunology, 2009, 182, 6217-6225.	0.8	101
104	Memory Alloreactive B Cells and Alloantibodies Prevent Anti-CD154-Mediated Allograft Acceptance. Journal of Immunology, 2009, 182, 1314-1324.	0.8	44
105	Antagonistic Effect of Toll-Like Receptor Signaling and Bacterial Infections on Transplantation Tolerance. Transplantation, 2009, 87, S77-S79.	1.0	17
106	Thrombomodulin in the treatment of atherothrombotic diseases. Frontiers in Bioscience - Elite, 2009, 1, 33.	1.8	11
107	Expression of Complement Regulatory Proteins in Accommodated Xenografts Induced by Anti-α-Gal IgG1 in a Rat-to-Mouse Model. American Journal of Transplantation, 2008, 8, 32-40.	4.7	36
108	Quantifying pancreatic beta-cell regeneration. Journal of the American College of Surgeons, 2008, 207, S106-S107.	0.5	0

#	Article	IF	CITATIONS
109	Prevention of Allograft Tolerance by Bacterial Infection with <i>Listeria monocytogenes</i> . Journal of Immunology, 2008, 180, 5991-5999.	0.8	83
110	Role of bacterial infections in allograft rejection. Expert Review of Clinical Immunology, 2008, 4, 281-293.	3.0	15
111	Long-Term Control of Alloreactive B Cell Responses by the Suppression of T Cell Help. Journal of Immunology, 2008, 180, 6077-6084.	0.8	18
112	Hyperacute Rejection by Anti-Gal IgG1, IgG2a, and IgG2b Is Dependent on Complement and Fc- \hat{l}^3 Receptors. Journal of Immunology, 2008, 180, 261-268.	0.8	28
113	Cellular Therapies for Type 1 Diabetes. Hormone and Metabolic Research, 2008, 40, 147-154.	1.5	22
114	Bioluminescence Imaging Visualizes Activation of Nuclear Factor-κB in Mouse Cardiac Transplantation. Transplantation, 2008, 85, 903-910.	1.0	17
115	Toll-like receptor signaling in transplantation. Current Opinion in Organ Transplantation, 2008, 13, 358-365.	1.6	40
116	CD4+ T Cells Are Sufficient to Elicit Allograft Rejection and Major Histocompatibility Complex Class I Molecule Is Required to Induce Recurrent Autoimmune Diabetes After Pancreas Transplantation in Mice. Transplantation, 2008, 85, 1205-1211.	1.0	12
117	The Multiple Facets of Toll-Like Receptors in Transplantation Biology. Transplantation, 2008, 86, 1-9.	1.0	66
118	Peripheral deletion of mature alloreactive B cells induced by costimulation blockade. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12093-12098.	7.1	32
119	Recovery of Islet Â-Cell Function in Streptozotocin- Induced Diabetic Mice: An Indirect Role for the Spleen. Diabetes, 2006, 55, 3256-3263.	0.6	83
120	Reversal of Diabetes in Non-Obese Diabetic Mice Without Spleen Cell-Derived Cell Regeneration. Science, 2006, 311, 1774-1775.	12.6	120
121	Concurrent Antiviral and Immunosuppressive Activities of Leflunomide In Vivo. American Journal of Transplantation, 2006, 6, 69-75.	4.7	87
122	Liver Ischemia Contributes to Early Islet Failure Following Intraportal Transplantation: Benefits of Liver Ischemic-Preconditioning. American Journal of Transplantation, 2006, 6, 60-68.	4.7	88
123	Response to Comment on Chong et al. on Diabetes Reversal in NOD Mice. Science, 2006, 314, 1243b-1243b.	12.6	5
124	Mechanistic Study of Malononitrileamide FK778 in Cardiac Transplantation and CMV Infection in Rats. Transplantation, 2005, 79, 17-22.	1.0	31
125	Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. Journal of Experimental Medicine, 2005, 201, 779-791.	8.5	395
126	Cutting Edge: NK Cells Mediate IgG1-Dependent Hyperacute Rejection of Xenografts. Journal of Immunology, 2004, 172, 7235-7238.	0.8	56

#	Article	IF	Citations
127	Evidence that tilapia islets do not express alpha-(1,3)gal: implications for islet xenotransplantation. Xenotransplantation, 2004, 11, 276-283.	2.8	8
128	Mouse-heart grafts expressing an incompatible carbohydrate antigen. II. Transition from accommodation to tolerance. Transplantation, 2004, 77, 366-373.	1.0	25
129	IFN-Î ³ Production Is Specifically Regulated by IL-10 in Mice Made Tolerant with Anti-CD40 Ligand Antibody and Intact Active Bone. Journal of Immunology, 2003, 170, 853-860.	0.8	15
130	Direct killing of xenograft cells by CD8+ T cells of discordant xenograft recipients1. Transplantation, 2002, 74, 1587-1595.	1.0	18
131	Role of CD4+ and CD8+ T cells in the rejection of concordant pancreas xenografts1. Transplantation, 2002, 74, 1236-1241.	1.0	11
132	Allograft tolerance induced by intact active bone co-transplantation and anti-CD40L monoclonal antibody therapy1. Transplantation, 2002, 74, 345-354.	1.0	23
133	Acute Xenograft Rejection Mediated by Antibodies Produced Independently of TH 1/TH 2 Cytokine Profiles. American Journal of Transplantation, 2002, 2, 526-534.	4.7	12
134	EXPERIENCES WITH LEFLUNOMIDE IN SOLID ORGAN TRANSPLANTATION. Transplantation, 2002, 73, 358-366.	1.0	128
135	LEWIS RAT PANCREAS, BUT NOT CARDIAC XENOGRAFTS, ARE RESISTANT TO ANTI-GAL ANTIBODY MEDIATED HYPERACUTE REJECTION 1. Transplantation, 2001, 71, 1385-1389.	1.0	9
136	THE STRUCTURE OF ANTI-GAL IMMUNOGLOBULIN GENES IN NA??VE AND STIMULATED GAL KNOCKOUT MICE. Transplantation, 2001, 72, 1817-1825.	1.0	24
137	INHIBITION OF HERPES SIMPLEX VIRUS TYPE 1 BY THE EXPERIMENTAL IMMUNOSUPPRESSIVE AGENT LEFLUNOMIDE1. Transplantation, 2001, 71, 170-174.	1.0	89
138	INHIBITION OF XENOGENEIC ANTI-ATG ANTIBODY PRODUCTION BY LEFLUNOMIDE IN ATG-TREATED RATS RESULTS IN SUPERIOR GRAFT PROTECTION Transplantation, 2000, 69, S191.	1.0	1
139	HYPERACUTE REJECTION OF RAT OR MOUSE HEARTS BY $\hat{l}\pm\hat{l}$,3 GALACTOSYLTRANSFERASE KNOCK-OUT MICE Transplantation, 2000, 69, S253.	1.0	0
140	Tolerance of T-independent xeno-antibody responses in the hamster-to-rat xenotransplantation model is species-restricted but not tissue-specific. Xenotransplantation, 2000, 7, 48-57.	2.8	11
141	Non-depleting anti-CD4, but not anti-CD8, antibody induces long-term survival of xenogeneic and allogeneic hearts in α1,3-galactosyltransferase knockout (GT-Ko) mice. Xenotransplantation, 2000, 7, 275-283.	2.8	20
142	Differential immune responses to \hat{l} ±-gal epitopes on xenografts and allografts: implications for accommodation in xenotransplantation. Journal of Clinical Investigation, 2000, 105, 301-310.	8.2	147
143	Inhibition of Cytomegalovirus in vitro and in vivo by the Experimental Immunosuppressive Agent Leflunomide. Intervirology, 1999, 42, 412-418.	2.8	134
144	Transcriptional Regulation of Fas Gene Expression by GA-binding Protein and AP-1 in T Cell Antigen Receptor·CD3 Complex-stimulated T Cells. Journal of Biological Chemistry, 1999, 274, 35203-35210.	3.4	41

#	Article	IF	CITATIONS
145	In vitro and in vivo antitumor activity of a novel immunomodulatory drug, leflunomide. Biochemical Pharmacology, 1999, 58, 1405-1413.	4.4	76
146	IN VIVO ACTIVITY OF LEFLUNOMIDE. Transplantation, 1999, 68, 100-109.	1.0	94
147	NOVEL MECHANISM OF INHIBITION OF CYTOMEGALOVIRUS BY THE EXPERIMENTAL IMMUNOSUPPRESSIVE AGENT LEFLUNOMIDE1,2. Transplantation, 1999, 68, 814-825.	1.0	126
148	THE PORTOSYSTEMIC SHUNT PROTECTS LIVER AGAINST ISCHEMIC REPERFUSION INJURY1. Transplantation, 1999, 68, 958-963.	1.0	26
149	Differential Effect of Leflunomide on Concordant Xenogeneic Islet Graft Rejection and Recurrence of Autoimmune Diabetes. Transplantation Proceedings, 1998, 30, 463-464.	0.6	0
150	IMMUNOSUPPRESSION PREVENTING CONCORDANT XENOGENEIC ISLET GRAFT REJECTION IS NOT SUFFICIENT TO PREVENT RECURRENCE OF AUTOIMMUNE DIABETES IN NONOBESE DIABETIC MICE. Transplantation, 1998, 65, 1310-1314.	1.0	18
151	ANTI-CD4 THERAPY IN COMBINED HEART-KIDNEY, HEART-LIVER, AND HEART-SMALL BOWEL ALLOTRANSPLANTS IN HIGH-RESPONDER RATS1. Transplantation, 1998, 66, 1-5.	1.0	11
152	PROTECTIVE EFFECT OF ISCHEMIC PRECONDITIONING ON LIVER PRESERVATION-REPERFUSION INJURY IN RATS. Transplantation, 1998, 66, 152-157.	1.0	180
153	HISTOLOGICAL CHARACTERIZATION AND PHARMACOLOGICAL CONTROL OF CHRONIC REJECTION IN XENOGENEIC AND ALLOGENEIC HEART TRANSPLANTATION 1. Transplantation, 1998, 66, 692-698.	1.0	25
154	FK506 TREATMENT IN COMBINATION WITH LEFLUNOMIDE IN HAMSTER-TO-RAT HEART AND LIVER XENOGRAFT TRANSPLANTATION. Transplantation, 1998, 66, 832-837.	1.0	18
155	Inhibition of JAK3 and STAT6 tyrosine phosphorylation by the immunosuppressive drug leflunomide leads to a block in IgG1 production. Journal of Immunology, 1998, 160, 1581-8.	0.8	118
156	In vitro and in vivo mechanisms of action of the antiproliferative and immunosuppressive agent, brequinar sodium. Journal of Immunology, 1998, 160, 846-53.	0.8	24
157	IFN-gamma induces cell growth inhibition by Fas-mediated apoptosis: requirement of STAT1 protein for up-regulation of Fas and FasL expression. Cancer Research, 1998, 58, 2832-7.	0.9	213
158	Induction of species-specific host accommodation in the hamster-to-rat xenotransplantation model. Journal of Immunology, 1998, 161, 2044-51.	0.8	23
159	Leflunomide, a potential immunosuppressant for pancreatic islet transplantation. Transplantation Proceedings, 1997, 29, 1296-1297.	0.6	3
160	Effect of leflunomide and cyclosporine on concordant xenogeneic islet transplantation in streptozotocin-induced and autoimmune diabetic mice. Transplantation Proceedings, 1997, 29, 2155.	0.6	2
161	Successful xenotransplantation of adult porcine islets in NOD and BALB/c mice with leflunomide and cyclosporine. Transplantation Proceedings, 1997, 29, 2166-2167.	0.6	4
162	Gene gun-mediated gene transfer and expression in rat islets. Transplantation Proceedings, 1997, 29, 2209-2210.	0.6	12

#	Article	IF	CITATIONS
163	PROLONGATION OF RAT ISLET ALLOGRAFT SURVIVAL BY THE IMMUNOSUPPRESSIVE AGENT LEFLUNOMIDE. Transplantation, 1997, 63, 711-716.	1.0	21
164	IN VIVO EFFECTS OF LEFLUNOMIDE ON NORMAL PANCREATIC ISLET AND SYNGENEIC ISLET GRAFT FUNCTION. Transplantation, 1997, 63, 716-721.	1.0	14
165	EFFECT OF ANTI-CD4 MONOCLONAL ANTIBODY COMBINED WITH HUMAN CTLA4lg ON THE SURVIVAL OF HAMSTER LIVER AND HEART XENOGRAFTS IN LEWIS RATS. Transplantation, 1997, 64, 317-321.	1.0	7
166	QUANTITATION OF THE CHANGES IN SPLENIC ARCHITECTURE DURING THE REJECTION OF CARDIAC ALLOGRAFTS OR XENOGRAFTS1. Transplantation, 1997, 64, 448-453.	1.0	14
167	MODIFICATION OF HUMORAL RESPONSES BY THE COMBINATION OF LEFLUNOMIDE AND CYCLOSPORINE IN LEWIS RATS TRANSPLANTED WITH HAMSTER HEARTS1,2. Transplantation, 1997, 64, 1650-1657.	1.0	24
168	The immunosuppressive metabolite of leflunomide, A77 1726, affects murine T cells through two biochemical mechanisms. Journal of Immunology, 1997, 159, 22-7.	0.8	115
169	In vivo mechanism by which leflunomide controls lymphoproliferative and autoimmune disease in MRL/MpJ-lpr/lpr mice. Journal of Immunology, 1997, 159, 167-74.	0.8	64
170	Control of lymphoproliferative and autoimmune disease in MRL-lpr/lpr mice by brequinar sodium: mechanisms of action. Journal of Pharmacology and Experimental Therapeutics, 1997, 283, 869-75.	2.5	7
171	Two activities of the immunosuppressive metabolite of leflunomide, A77 1726. Biochemical Pharmacology, 1996, 52, 527-534.	4.4	131
172	EFFECTS OF LEFLUNOMIDE AND OTHER IMMUNOSUPPRESSIVE AGENTS ON T CELL PROLIFERATION IN VITRO1. Transplantation, 1996, 61, 140-145.	1.0	67
173	REGULATION OF B CELL FUNCTION BY THE IMMUNOSUPPRESSIVE AGENT LEFLUNOMIDE1. Transplantation, 1996, 61, 635-642.	1.0	156
174	GRANULOCYTE COLONY-STIMULATING FACTOR IMMUNOMODULATION IN THE RAT CARDIAC TRANSPLANTATION MODEL. Transplantation, 1996, 61, 1122-1125.	1.0	17
175	DELAYED XENOGRAFT REJECTION IN THE CONCORDANT HAMSTER HEART INTO LEWIS RAT MODEL1. Transplantation, 1996, 62, 90-96.	1.0	46
176	Complete control of humoral and cell-mediated xenoreactions with the combination of leflunomide and cyclosporine. Transplantation Proceedings, 1996, 28, 684.	0.6	2
177	PHARMACOLOGICALLY INDUCED REGRESSION OF CHRONIC TRANSPLANT REJECTION. Transplantation, 1995, 60, 1065-1072.	1.0	56
178	Inhibition of Protein Tyrosine Phosphorylation in T Cells by a Novel Immunosuppressive Agent, Leflunomide. Journal of Biological Chemistry, 1995, 270, 12398-12403.	3.4	191
179	Improved Viability of Hepatic Allografts from Fasted Donors Is Associated with Decreased Peripheral TNF Activity. Journal of Surgical Research, 1995, 58, 337-343.	1.6	6
180	Inactivation of kupffer cells after prolonged donor fasting improves viability of transplanted hepatic allografts. Hepatology, 1995, 22, 1236-1242.	7.3	5

#	Article	IF	Citations
181	Cross-linking of CD45 on NK cells stimulates p56lck-mediated tyrosine phosphorylation and IFN-gamma production. Journal of Immunology, 1995, 155, 5241-8.	0.8	10
182	CD45-cross-linking stimulates IFN-gamma production in NK cells. Journal of Immunology, 1995, 154, 644-52.	0.8	14
183	CD54/ICAM-1 Is a Costimulator of NK Cell-Mediated Cytotoxicity. Cellular Immunology, 1994, 157, 92-105.	3.0	46
184	Leflunomide controls rejection in hamster to rat cardiac xenografts. Transplantation, 1994, 58, 828-34.	1.0	6
185	Splanchnic transplantation. Transplantation Proceedings, 1994, 26, 1411-2.	0.6	0
186	Leflunomide immunosuppression in rat small intestinal transplantation. Transplantation Proceedings, 1994, 26, 1599-600.	0.6	10
187	Allograft ultraviolet-B irradiation in rat small intestinal transplantation. Transplantation Proceedings, 1994, 26, 1624-5.	0.6	0
188	Leflunomide in experimental transplantation. Control of rejection and alloantibody production, reversal of acute rejection, and interaction with cyclosporine. Transplantation, 1994, 57, 1223-31.	1.0	10
189	Diverse multidrug-resistance-modification agents inhibit cytolytic activity of natural killer cells. Cancer Immunology, Immunotherapy, 1993, 36, 133-139.	4.2	59
190	LEFLUNOMIDE, A NOVEL IMMUNOSUPPRESSIVE AGENT. Transplantation, 1993, 55, 1361-1366.	1.0	88
191	Natural killer cell cytotoxicity and the multidrug resistance gene. Transplantation Proceedings, 1993, 25, 96-7.	0.6	7
192	Leflunomide, a novel immunomodulatory agent: in vitro analyses of the mechanism of immunosuppression. Transplantation Proceedings, 1993, 25, 747-9.	0.6	24
193	Stimulation of IFN-Î ³ , TNF-α, and TNF-Î ² secretion in IL-2-activated T cells: Costimulatory roles for LFA-1, LFA-2, CD44, and CD45 molecules. Cellular Immunology, 1992, 144, 69-79.	3.0	29
194	Monoclonal antibodies anti-CD3, anti-TCR $\hat{1}$ ± $\hat{1}$ 2 and anti-CD2 act synergistically with tumor cells to stimulate lymphokine-activated killer cells and tumor-infiltrating lymphocytes to secrete interferon $\hat{1}$ 3. Cancer Immunology, Immunotherapy, 1992, 35, 335-341.	4.2	6
195	Multidrug resistance activity in human lymphocytes. Human Immunology, 1991, 32, 134-140.	2.4	90
196	Ability of cell-sized beads bearing tumor cell membrane proteins to stimulate LAK cells to secrete interferon- \hat{l}^3 and tumor necrosis factor- $\hat{l}\pm 1$. Cellular Immunology, 1991, 134, 96-110.	3.0	1
197	Phenotypic analyses of lymphokine-activated killer cells that release interferon \hat{l}^3 and tumor necrosis factor $\hat{l}\pm$. Cancer Immunology, Immunotherapy, 1990, 31, 255-259.	4.2	8
198	Modification of the clonogenic assay for the detection of lymphokine activated killer cell activity. Journal of Immunological Methods, 1990, 128, 119-126.	1.4	3

Anita Chong

#	ARTICLE	IF	CITATIONS
199	Cytostatic and cytotoxic activity of lymphokine-activated killer cell supernatants. Cancer Immunology, Immunotherapy, 1989, 30, 65-70.	4.2	9
200	Phenotypic and functional analysis of lymphokine-activated killer (LAK) cell clones. Cancer Immunology, Immunotherapy, 1989, 29, 270-8.	4.2	21
201	Tumor targets stimulate IL-2 activated killer cells to produce interferon-gamma and tumor necrosis factor. Journal of Immunology, 1989, 142, 2133-9.	0.8	62
202	Blocking of lymphokine activated killer (LAK) cell mediated cytotoxicity by cell-sized beads bearing tumor cell proteins. Journal of Immunology, 1988, 141, 4418-24.	0.8	9
203	Cell surface receptors for sulphated polysaccharides: a potential marker for macrophage subsets. Immunology, 1986, 58, 277-84.	4.4	16
204	Nonimmune lymphocyte-macrophage interaction. Cellular Immunology, 1985, 92, 265-276.	3.0	16
205	Nonimmune lymphocyte-macrophage interaction. Cellular Immunology, 1985, 92, 277-289.	3.0	26