List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7399270/publications.pdf Version: 2024-02-01

		134610	54771
129	8,104	34	88
papers	citations	h-index	g-index
120	122	120	11606
152	152	152	11090
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Narrowlyâ€Distributed Conjugated Polymers Synthesized through Suzuki Polymerization with Palladium(II) Nâ€Heterocyclic Carbene Complex Confined in Dendritic Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 2022, 28, .	1.7	5
2	Computational investigation on potential energy surface evolution: The tautomerization from enediyne to enyne-allene. Chemical Physics Letters, 2022, 789, 139298.	1.2	1
3	Synthesis and biological properties of maleimide-based macrocyclic lactone enediynes. Organic and Biomolecular Chemistry, 2022, 20, 5481-5488.	1.5	2
4	Controlled synthesis of conjugated polymers in dendritic mesoporous silica nanoparticles. Chemical Communications, 2021, 57, 4146-4149.	2.2	9
5	Direct functionalization of cyclic ethers with maleimide iodides via free radial-mediated sp3 C–H activation. Chemical Communications, 2021, 57, 4787-4790.	2.2	3
6	A carrier-free nanoparticle with dual NIR/acid responsiveness by co-assembly of enediyne and IR820 for combined PTT/chemotherapy. Journal of Materials Chemistry B, 2021, 9, 4056-4064.	2.9	8
7	Nucleophilic Addition to Diradicals Derived From Cycloaromatization of Maleimideâ€Based Enediynes. Asian Journal of Organic Chemistry, 2021, 10, 1454-1462.	1.3	2
8	Intermolecular proton transfer assisted 1,4-Michael addition for enediyne conversion to enyne-allene. Chemical Physics Letters, 2021, 780, 138899.	1.2	2
9	A fluorescent sensor array-based electronic tongue for Chinese tea discrimination. Journal of Materials Chemistry C, 2021, 9, 5676-5681.	2.7	12
10	Synthesis of maleimide-based enediynes with cyclopropane moieties for enhanced cytotoxicity under normoxic and hypoxic conditions. Journal of Materials Chemistry B, 2021, 9, 4502-4509.	2.9	6
11	Experimental and Computational Study on the Intramolecular Hydrogen Atom Transfer Reactions of Maleimide-Based Enediynes After Cycloaromatization. Journal of Organic Chemistry, 2021, 86, 1549-1559.	1.7	8
12	Silicon Promoted Cationic Polymerization of Phenylacetylenes. Macromolecules, 2020, 53, 240-248.	2.2	6
13	Experimental and Computational Study on the Reaction Pathways of Diradical Intermediates Formed from Myersâ€Saito Cyclization of Maleimideâ€Based Enediynes. Asian Journal of Organic Chemistry, 2020, 9, 2170-2175.	1.3	4
14	Synthesis of Conjugated Mesoporous Hyper-cross-linked Polymers for Efficient Capture of Dibenzothiophene and Iodine. ACS Applied Materials & Interfaces, 2020, 12, 56454-56461.	4.0	10
15	Synthesis of Chiral Porous Organic Polymers Through Nucleophilic Substitution for Chiral Separation. ACS Applied Polymer Materials, 2020, 2, 5414-5422.	2.0	12
16	Flash nanoprecipitation with Gd(III)â€based metallosurfactants to fabricate polylactic acid nanoparticles as highly efficient contrast agents for magnetic resonance imaging. Chemistry - an Asian Journal, 2020, 15, 2475-2479.	1.7	10
17	Gadolinium complexes of macrocyclic diethylenetriamine-N-oxide pentaacetic acid-bisamide as highly stable MRI contrast agents with high relaxivity. Dalton Transactions, 2020, 49, 8927-8932.	1.6	16
18	Coâ€Assembly of Gd(III)â€Based Metallosurfactant and Conjugated Polymer Nanoparticles in Organosilica Crossâ€Linked Block Copolymer Micelles for Highly Efficient MRI and Fluorescent Bimodal Imaging. Particle and Particle Systems Characterization, 2020, 37, 2000044.	1.2	8

#	Article	IF	CITATIONS
19	Triggering the Antitumor Activity of Acyclic Enediyne through Maleimide-Assisted Rearrangement and Cycloaromatization. Journal of Organic Chemistry, 2020, 85, 9808-9819.	1.7	19
20	Formation of nanosized Gd(III) coordination networks with tripodal amine-N-oxide type ligand through microemulsions to achieve high relaxivity and exceptional stability for MRI applications. Journal of Materials Science, 2020, 55, 13206-13215.	1.7	1
21	Preparation of Maleimideâ€Based Enediynes with Propargyl Ester for Efficient Tumor Cell Suppression. ChemistrySelect, 2020, 5, 7069-7075.	0.7	7
22	Fluorescent electronic tongue supported with water-borne polyurethane for the discrimination of nitroaromatics in aqueous solution. Journal of Materials Chemistry C, 2020, 8, 2500-2506.	2.7	13
23	Facilitating Myers–Saito cyclization through acid-triggered tautomerization for the development of maleimide-based antitumor agents. Journal of Materials Chemistry B, 2020, 8, 1971-1979.	2.9	13
24	Fabrication, flame retardancy and physical properties of phosphorus containing porous organic polymers/epoxy resin composites. Polymer Degradation and Stability, 2020, 176, 109159.	2.7	18
25	Preparation and antitumor applications of asymmetric propargyl amide maleimide based enediyne antibiotics. Tetrahedron, 2020, 76, 131242.	1.0	9
26	Controlled Step-Growth Polymerization. CCS Chemistry, 2020, 2, 64-70.	4.6	15
27	Interpenetrating Polymer Networks of Porous Organic Polymers and Polyurethanes for Flame Resistance and High Mechanical Properties. ACS Applied Polymer Materials, 2019, 1, 2692-2702.	2.0	18
28	Self-delivery nanoparticles of an amphiphilic irinotecan–enediyne conjugate for cancer combination chemotherapy. Journal of Materials Chemistry B, 2019, 7, 103-111.	2.9	16
29	Gadolinium complexes of diethylenetriamine- <i>N</i> -oxide pentaacetic acid-bisamide: a new class of highly stable MRl contrast agents with a hydration number of 3. Dalton Transactions, 2019, 48, 1693-1699.	1.6	17
30	Hyperbranched Conjugated Polymer Dots: The Enhanced Photocatalytic Activity for Visible Light-Driven Hydrogen Production. Macromolecules, 2019, 52, 4376-4384.	2.2	47
31	Synthesis of Conjugated Microporous Polymers through Cationic Cyclization Polymerization. Macromolecules, 2019, 52, 3935-3941.	2.2	30
32	Selfâ€Delivery Nanoparticles of Amphiphilic Acyclic Enediynes for Efficient Tumor Cell Suppression. Chinese Journal of Chemistry, 2019, 37, 479-485.	2.6	4
33	Fluorescent electronic tongue based on soluble conjugated polymeric nanoparticles for the discrimination of heavy metal ions in aqueous solution. Polymer Chemistry, 2019, 10, 2256-2262.	1.9	15
34	Light-Cross-linked Enediyne Small-Molecule Micelle-Based Drug-Delivery System. ACS Applied Materials & Interfaces, 2019, 11, 8896-8903.	4.0	19
35	Coordinationâ€Accelerated Radical Formation from Acyclic Enediynes for Tumor Cell Suppression. Chemistry - an Asian Journal, 2019, 14, 4352-4357.	1.7	6
36	Electrostatic self-assembled nanoparticles based on spherical polyelectrolyte brushes for magnetic resonance imaging. Dalton Transactions, 2018, 47, 7663-7668.	1.6	8

#	Article	IF	CITATIONS
37	Palladium-catalyzed cycloaromatization polymerization of enediynes. Chinese Journal of Polymer Science (English Edition), 2018, 36, 237-243.	2.0	2
38	Conjugated Polymer Nanoparticles Based Fluorescent Electronic Nose for the Identification of Volatile Compounds. Analytical Chemistry, 2018, 90, 4815-4822.	3.2	50
39	Controlled synthesis of water-dispersible conjugated polymeric nanoparticles for cellular imaging. European Polymer Journal, 2018, 105, 1-6.	2.6	3
40	Concurrent Radical Addition and [3+2] Cycloaddition between Nitrones and Maleimideâ€Based Acyclic Enediynes. Asian Journal of Organic Chemistry, 2018, 7, 2076-2081.	1.3	2
41	An acyclic enediyne anticancer compound attributed to a Bergman cyclization at physiological temperature. Tetrahedron, 2018, 74, 6419-6425.	1.0	11
42	Controlling Morphology and Release Behavior of Sorafenib-Loaded Nanocarriers Prepared by Flash Nanoprecipitation. Industrial & Engineering Chemistry Research, 2018, 57, 11911-11919.	1.8	15
43	A Novel Approach toward Polyfulvene: Cationic Polymerization of Enediynes. Macromolecules, 2017, 50, 534-541.	2.2	18
44	From natural cotton thread to sewable energy dense supercapacitors. Nanoscale, 2017, 9, 6406-6416.	2.8	19
45	Controlled synthesis of soluble conjugated polymeric nanoparticles for fluorescence detection. RSC Advances, 2017, 7, 25740-25745.	1.7	10
46	Synthesis of Bergman cyclization-based porous organic polymers and their performances in gas storage. Polymer, 2017, 118, 249-255.	1.8	5
47	Unexpected [2+2] Photocycloaddition between Enediyne Compounds in Solid State. Asian Journal of Organic Chemistry, 2017, 6, 775-779.	1.3	8
48	Cycloaromatization of Enediyne Compounds under the Action of Bromide Ions: Diradical/Zwitterionic/Anionic Pathways. Asian Journal of Organic Chemistry, 2017, 6, 1099-1103.	1.3	7
49	Synthesis of fluorescent hyperbranched enediynes and Bergman cyclization polymerization for generating spatially locked persistent radicals. Polymer, 2017, 119, 245-252.	1.8	2
50	Construction of Polyarylenes with Various Structural Features via Bergman Cyclization Polymerization. Topics in Current Chemistry, 2017, 375, 60.	3.0	4
51	Spherical Polyelectrolyte Brushes as a Novel Platform for Paramagnetic Relaxation Enhancement and Passive Tumor Targeting. Advanced Healthcare Materials, 2017, 6, 1700071.	3.9	2
52	Combinatorial synthesis of soluble conjugated polymeric nanoparticles and tunable multicolour fluorescence sensing. Polymer Chemistry, 2017, 8, 5734-5740.	1.9	16
53	Successful Coupling of a Bis-Amidoxime Uranophile with a Hydrophilic Backbone for Selective Uranium Sequestration. ACS Applied Materials & Interfaces, 2017, 9, 27894-27904.	4.0	36
54	Chemical Synthesis of Carbon Nanomaterials Through Bergman Cyclization. Advances in Polymer Science, 2017, , 147-171.	0.4	1

#	Article	IF	CITATIONS
55	Construction of Polyarylenes with Various Structural Features via Bergman Cyclization Polymerization. Topics in Current Chemistry Collections, 2017, , 97-126.	0.2	1
56	Size-controlled synthesis of soluble-conjugated microporous polymer nanoparticles through sonogashira polycondensation in confined nanoreactors. Journal of Polymer Science Part A, 2016, 54, 2285-2290.	2.5	17
57	Cobalt-Catalyzed Borylation of Aryl Halides and Pseudohalides. Organometallics, 2016, 35, 1559-1564.	1.1	39
58	A highly efficient catalytic α-alkylation of unactivated amides using primary alcohols. Tetrahedron Letters, 2016, 57, 2919-2921.	0.7	22
59	A high performance flexible all solid state supercapacitor based on the MnO ₂ sphere coated macro/mesoporous Ni/C electrode and ionic conducting electrolyte. Nanoscale, 2016, 8, 11976-11983.	2.8	19
60	HP-DO3A-based amphiphilic MRI contrast agents and relaxation enhancement through their assembly with polyelectrolytes. Journal of Materials Chemistry B, 2016, 4, 7241-7248.	2.9	9
61	Enediyne as π linker in D–π–A dyes for dye-sensitized solar cells. RSC Advances, 2016, 6, 12124-12130.	1.7	2
62	Facile synthesis of Gd(<scp>iii</scp>) metallosurfactant-functionalized carbon nanodots with high relaxivity as bimodal imaging probes. RSC Advances, 2016, 6, 29441-29447.	1.7	15
63	Hyperbranched polyethylenimine based polyamine-N-oxide-carboxylate chelates of gadolinium for high relaxivity MRI contrast agents. RSC Advances, 2016, 6, 28063-28068.	1.7	19
64	Nanoscale Metal–Organic Frameworks for Ratiometric Oxygen Sensing in Live Cells. Journal of the American Chemical Society, 2016, 138, 2158-2161.	6.6	276
65	Distinctive slit-shaped porous carbon encapsulating phosphorus as a promising anode material for lithium batteries. Ionics, 2016, 22, 167-172.	1.2	14
66	Synthesis of soluble conjugated polymeric nanoparticles through heterogeneous Suzuki coupling reaction. Polymer, 2015, 64, 216-220.	1.8	13
67	Preparation of hierarchically porous carbon nanofoams for electrode materials of supercapacitors. RSC Advances, 2015, 5, 70297-70301.	1.7	6
68	Catalytic alkane dehydrogenations. Science Bulletin, 2015, 60, 1316-1331.	4.3	53
69	Co-sensitization of N719 with polyphenylenes from the Bergman cyclization of maleimide-based enediynes for dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 11607-11614.	5.2	17
70	Synthesis of polyphenylenes through bergman cyclization of enediynes with long chain alkyl groups. Chinese Journal of Polymer Science (English Edition), 2015, 33, 184-191.	2.0	6
71	Synthesis of ADI/HDI hybrid isocyanurate and its application in polyurethane coating. Journal of Coatings Technology Research, 2015, 12, 543-553.	1.2	6
72	Synthesis of chiral polyphenylenes through Bergman cyclization of enediynes with pendant chiral amino ester groups. Chinese Journal of Polymer Science (English Edition), 2015, 33, 743-753.	2.0	7

#	Article	IF	CITATIONS
73	Facile approach for preparing porous organic polymers through Bergman cyclization. Polymer Chemistry, 2015, 6, 4734-4741.	1.9	12
74	Highly Ordered Metal Oxide Nanorods inside Mesoporous Silica Supported Carbon Nanomembranes: High Performance Electrode Materials for Symmetrical Supercapacitor Devices. Journal of Physical Chemistry C, 2015, 119, 8530-8536.	1.5	49
75	An acyclic enediyne with a furyl tethering group for efficient inhibition of tumor cell viability. Journal of Materials Chemistry B, 2015, 3, 8584-8588.	2.9	12
76	Recent advances of the Bergman cyclization in polymer science. Science China Chemistry, 2015, 58, 1710-1723.	4.2	16
77	Maleimide-based acyclic enediyne for efficient DNA-cleavage and tumor cell suppression. Journal of Materials Chemistry B, 2015, 3, 3195-3200.	2.9	34
78	Supramolecular aggregates from polyacrylates and Gd(<scp>iii</scp>)-containing cationic surfactants as high-relaxivity MRI contrast agents. Polymer Chemistry, 2015, 6, 1521-1526.	1.9	24
79	Synthesis of HDI/IPDI hybrid isocyanurate and its application in polyurethane coating. Progress in Organic Coatings, 2015, 78, 225-233.	1.9	17
80	Organelle-Specific Nitric Oxide Detection in Living Cells via HaloTag Protein Labeling. PLoS ONE, 2015, 10, e0123986.	1.1	12
81	Synthesis, self-assembly, and thermosensitivity of amphiphilic POEGMA-PDMS-POEGMA triblock copolymers. Journal of Polymer Science Part A, 2014, 52, 2684-2691.	2.5	14
82	Surface-assisted cis–trans isomerization of an alkene molecule on Cu(110). Chemical Communications, 2014, 50, 1728-1730.	2.2	13
83	Preparation of conjugated polyphenylenes from maleimide-based enediynes through thermal-triggered Bergman cyclization polymerization. Polymer Chemistry, 2014, 5, 1241-1247.	1.9	32
84	Synthesis of carbon nanomembranes through cross-linking of phenyl self-assembled monolayers for electrode materials in supercapacitors. Journal of Materials Chemistry A, 2014, 2, 5212.	5.2	9
85	Sizeâ€Controlled Synthesis of Conjugated Polymer Nanoparticles in Confined Nanoreactors. Angewandte Chemie - International Edition, 2014, 53, 14144-14148.	7.2	41
86	Tailoring on-surface supramolecular architectures based on adenine directed self-assembly. Chemical Communications, 2014, 50, 356-358.	2.2	5
87	Preparation of Highly Efficient MRI Contrast Agents through Complexation of Cationic Gd ^{III} â€Containing Metallosurfactant with Biocompatible Polyelectrolytes. Chemistry - A European Journal, 2014, 20, 12477-12482.	1.7	11
88	Carbon quantum dots: synthesis, properties and applications. Journal of Materials Chemistry C, 2014, 2, 6921.	2.7	1,814
89	Study on the relation between pore size and supercapacitance in mesoporous carbon electrodes with silica-supported carbon nanomembranes. RSC Advances, 2014, 4, 40296-40300.	1.7	44
90	Practical access to bandgap-like N-doped carbon dots with dual emission unzipped from PAN@PMMA core–shell nanoparticles. Journal of Materials Chemistry C, 2013, 1, 7731.	2.7	60

#	Article	IF	CITATIONS
91	Attaching double chain cationic Gd(iii)-containing surfactants on nanosized colloids for highly efficient MRI contrast agents. Journal of Materials Chemistry B, 2013, 1, 5443.	2.9	15
92	Coating Magnetite Nanoparticles with a Polyaryl Monolayer through Bergman Cyclizationâ€Mediated Polymerization. Chemistry - an Asian Journal, 2013, 8, 560-563.	1.7	3
93	Preparation of carbon nanodots from single chain polymeric nanoparticles and theoretical investigation of the photoluminescence mechanism. Journal of Materials Chemistry C, 2013, 1, 580-586.	2.7	158
94	Embedding Co3O4 nanoparticles in SBA-15 supported carbon nanomembrane for advanced supercapacitor materials. Journal of Materials Chemistry A, 2013, 1, 3171.	5.2	63
95	A self-assembled molecular nanostructure for trapping the native adatoms on Cu(110). Chemical Communications, 2013, 49, 1735.	2.2	15
96	On-Surface Formation of One-Dimensional Polyphenylene through Bergman Cyclization. Journal of the American Chemical Society, 2013, 135, 8448-8451.	6.6	154
97	Atomic‣cale Probing the Priority of Oxidation Sites of an Organic Molecule Adsorbed at the CuO/Cu(1 1 0) Interface. ChemCatChem, 2013, 5, 2662-2666.	1.8	0
98	Controlling on-surface molecular diffusion behaviors by functionalizing the organic molecules with tert-butyl groups. Applied Physics Letters, 2013, 103, 013103.	1.5	8
99	Functionalization of Pristine Graphene with Conjugated Polymers through Diradical Addition and Propagation. Chemistry - an Asian Journal, 2012, 7, 2547-2550.	1.7	25
100	Synthesis of Thiol-Containing Amino Acids Through Alkylation of Glycinate Ketimine. Synthetic Communications, 2012, 42, 914-920.	1.1	2
101	Sizeâ€Tunable Polymeric Nanoreactors for Oneâ€Pot Synthesis and Encapsulation of Quantum Dots. Macromolecular Rapid Communications, 2012, 33, 1393-1398.	2.0	27
102	Immobilization of chiral catalysts on magnetite nanoparticles for highly enantioselective asymmetric hydrogenation of aromatic ketones. RSC Advances, 2012, 2, 2576.	1.7	50
103	High-relaxivity MRI contrast agents prepared from miniemulsion polymerization using gadolinium(iii)-based metallosurfactants. Chemical Communications, 2011, 47, 4240.	2.2	40
104	Formation of polymeric nanoparticles via Bergman cyclization mediated intramolecular chain collapse. Journal of Materials Chemistry, 2011, 21, 2679.	6.7	53
105	Synthesis of Ultrathin Ordered Porous Carbon through Bergman Cyclization of Enediyne Self-Assembled Monolayers on Silica Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 15829-15833.	1.5	13
106	Palladium nanoparticles in carbon thin film-lined SBA-15 nanoreactors: efficient heterogeneous catalysts for Suzuki–Miyaura cross coupling reaction in aqueous media. Chemical Communications, 2011, 47, 10707.	2.2	111
107	Synthesis of dendronized polymers through bergman cyclization of enediyneâ€containing Frechetâ€type dendrimers. Journal of Polymer Science Part A, 2011, 49, 1368-1375.	2.5	16
108	Covalent surface functionalization of multiwalled carbon nanotubes through bergman cyclization of enediyneâ€containing dendrimers. Journal of Polymer Science Part A, 2011, 49, 3951-3959.	2.5	8

#	Article	IF	CITATIONS
109	A convergence of photoâ€bergman cyclization and intramolecular chain collapse towards polymeric nanoparticles. Journal of Polymer Science Part A, 2011, 49, 5330-5338.	2.5	49
110	Bergman Cyclization in Polymer Chemistry and Material Science. Macromolecular Rapid Communications, 2011, 32, 1688-1698.	2.0	35
111	Formation of conjugated polynaphthalene via Bergman cyclization. Journal of Polymer Science Part A, 2010, 48, 2187-2193.	2.5	14
112	Functionalization of multiwalled carbon nanotubes with polyesters via bergman cyclization and "grafting from―strategy. Journal of Polymer Science Part A, 2010, 48, 5541-5548.	2.5	19
113	Synthesis of Ultrathin Mesoporous Carbon through Bergman Cyclization of Enediyne Self-Assembled Monolayers in SBA-15. Langmuir, 2010, 26, 11244-11248.	1.6	45
114	Synthesis of Novel "Rodâ^'Coil―Brush Polymers with Conjugated Backbones through Bergman Cyclization. Macromolecules, 2010, 43, 909-913.	2.2	37
115	Palladium-Catalyzed Intermolecular Asymmetric Hydroamination with 4,4′-Disubstituted BINAP and SEGPHOS. Advanced Synthesis and Catalysis, 2006, 348, 2051-2056.	2.1	86
116	Catalytic asymmetric hydrogenation of aromatic ketones in room temperature ionic liquids. Tetrahedron Letters, 2005, 46, 595-597.	0.7	58
117	A Homochiral Porous Metalâ^'Organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis. Journal of the American Chemical Society, 2005, 127, 8940-8941.	6.6	1,814
118	Magnetically Recoverable Chiral Catalysts Immobilized on Magnetite Nanoparticles for Asymmetric Hydrogenation of Aromatic Ketones. Journal of the American Chemical Society, 2005, 127, 12486-12487.	6.6	596
119	Ru-Catalyzed Asymmetric Hydrogenation of α-Phthalimide Ketones and 1,3-Diaryl Diketones Using 4,4â€~-Substituted BINAPs. Organic Letters, 2005, 7, 455-458.	2.4	39
120	Remarkable 4,4′-Substituent Effects on Binap: Highly Enantioselective Ru Catalysts for Asymmetric Hydrogenation ofβ-Aryl Ketoesters and Their Immobilization in Room-Temperature Ionic Liquids. Angewandte Chemie - International Edition, 2004, 43, 2501-2504.	7.2	147
121	4,4′-Disubstituted BINAPs for Highly Enantioselective Ru-Catalyzed Asymmetric Hydrogenation of Ketones ChemInform, 2004, 35, no.	0.1	0
122	Molecular building block approaches to chiral porous zirconium phosphonates for asymmetric catalysis. Journal of Molecular Catalysis A, 2004, 215, 177-186.	4.8	87
123	4,4â€~-Disubstituted BINAPs for Highly Enantioselective Ru-Catalyzed Asymmetric Hydrogenation of Ketones. Organic Letters, 2004, 6, 2937-2940.	2.4	69
124	Chiral, Porous, Hybrid Solids for Highly Enantioselective Heterogeneous Asymmetric Hydrogenation ofl²-Keto Esters. Angewandte Chemie - International Edition, 2003, 42, 6000-6003.	7.2	177
125	Chiral Porous Hybrid Solids for Practical Heterogeneous Asymmetric Hydrogenation of Aromatic Ketones. Journal of the American Chemical Society, 2003, 125, 11490-11491.	6.6	300
126	Highly enantioselective catalytic asymmetric hydrogenation of Î ² -keto esters in room temperature ionic liquids. Chemical Communications, 2003, , 1912-1913.	2.2	69

#	Article	IF	CITATIONS
127	A chiral metallacyclophane for asymmetric catalysisElectonic supplementary information (ESI) available: experimental details and analytical data for 2 and 3, and general procedure for analysis. See http://www.rsc.org/suppdata/cc/b2/b208324h/. Chemical Communications, 2003, , 96-97.	2.2	67
128	The First Chiral Organometallic Triangle for Asymmetric Catalysis. Journal of the American Chemical Society, 2002, 124, 12948-12949.	6.6	232
129	Polycondensation in Confined Nanopores toward Selective Formation of Narrowly Dispersed Linear Polyesters. Polymer Chemistry, 0, , .	1.9	1