Sibylle Gemming

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7398508/publications.pdf

Version: 2024-02-01

157	4,175	31	59
papers	citations	h-index	g-index
162	162	162	6112
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Conduction at domain walls in oxide multiferroics. Nature Materials, 2009, 8, 229-234.	27. 5	1,212
2	High Conductivity in Molecularly pâ€Doped Diketopyrrolopyrroleâ€Based Polymer: The Impact of a High Dopant Strength and Good Structural Order. Advanced Materials, 2016, 28, 6003-6010.	21.0	130
3	Wear, Plasticity, and Rehybridization in Tetrahedral Amorphous Carbon. Tribology Letters, 2014, 53, 119-126.	2.6	89
4	DNA-wrapped carbon nanotubes. Nanotechnology, 2007, 18, 245702.	2.6	88
5	Structure and Stability of Molybdenum Sulfide Fullerenes. Angewandte Chemie - International Edition, 2007, 46, 623-627.	13.8	84
6	Chemical and Electronic Repair Mechanism of Defects in MoS ₂ Monolayers. ACS Nano, 2017, 11, 9989-9996.	14.6	80
7	Nitrogen interstitial diffusion induced decomposition in AISI 304L austenitic stainless steel. Acta Materialia, 2012, 60, 4065-4076.	7.9	76
8	Starâ€Shaped Oligobenzoates: Nonâ€conventional Mesogens Forming Columnar Helical Mesophases. Chemistry - A European Journal, 2008, 14, 3562-3576.	3.3	72
9	Olefin Epoxidation by Methyltrioxorhenium: A Density Functional Study on Energetics and Mechanisms. Angewandte Chemie - International Edition, 1998, 37, 2211-2214.	13.8	70
10	Atomic-Scale Structure of Mo ₆ S ₆ Nanowires. Nano Letters, 2008, 8, 3928-3931.	9.1	68
11	Molecular Doping of a High Mobility Diketopyrrolopyrrole–Dithienylthieno[3,2- <i>b</i>)thiophene Donor–Acceptor Copolymer with F6TCNNQ. Macromolecules, 2017, 50, 914-926.	4.8	66
12	Ab initiocalculation of near-edge structures in electron-energy-loss spectra for metal-oxide crystals. Physical Review B, 1999, 60, 14025-14034.	3.2	58
13	Topology and Origin of Effective Spin Meron Pairs in Ferromagnetic Multilayer Elements. Physical Review Letters, 2013, 110, 177201.	7.8	55
14	Optics, Mechanics, and Energetics of Two-Dimensional MoS ₂ Nanostructures from a Theoretical Perspective. Accounts of Chemical Research, 2015, 48, 48-55.	15.6	53
15	Migration-induced field-stabilized polar phase in strontium titanate single crystals at room temperature. Physical Review B, 2013, 88, .	3.2	50
16	Nanoplatelets made from MoS2 and WS2. Chemical Physics Letters, 2006, 418, 36-39.	2.6	49
17	Synthesis of NiCl2 nanotubes and fullerene-like structures by laser ablation: theoretical considerations and comparison with MoS2 nanotubes. Physical Chemistry Chemical Physics, 2003, 5, 1644-1651.	2.8	48
18	Lightâ€Induced Switching of Tunable Singleâ€Molecule Junctions. Advanced Science, 2015, 2, 1500017.	11.2	48

#	Article	IF	Citations
19	Structure, stability and electronic properties of composite Mo1–xNbxS2 nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 1757-1764.	1.5	46
20	Electromechanical Switch Based on Mo ₆ S ₆ Nanowires. Nano Letters, 2008, 8, 4093-4097.	9.1	45
21	Density functional study of the $\hat{1}$ 2 (111) [1bar10] symmetrical tilt grain boundary in SrTiO3. Journal of Physics Condensed Matter, 2001, 13, 3949-3960.	1.8	44
22	Prediction of Alternative Structures of the Molybdenum Site in the Xanthine Oxidase-Related Aldehyde Oxido Reductase. Journal of the American Chemical Society, 1997, 119, 3159-3160.	13.7	43
23	An intermediate neglect of differential overlap technique for actinide compounds. Journal of Chemical Physics, 1994, 100, 1353-1365.	3.0	42
24	Microscopic structure and bonding at the Pd/SrTiO3 (001) Interface an ab-initio local-density-functional study. Integrated Ferroelectrics, 2001, 32, 267-278.	0.7	40
25	Carbon p Electron Ferromagnetism in Silicon Carbide. Scientific Reports, 2015, 5, 8999.	3.3	38
26	SrTiO3(001)â^£LaAlO3(001) multilayers: A density-functional investigation. Acta Materialia, 2006, 54, 4299-4306.	7.9	36
27	High resolution TEM study of WS ₂ nanotubes. Physica Status Solidi (B): Basic Research, 2011, 248, 2716-2719 A correlation 15-2719 A correlation of the state of the	1.5	35
28	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si60.svg"> <mml:mrow><mml:mn>100</mml:mn><mml:mspace width="0.25em"></mml:mspace><mml:mi>°</mml:mi><mml:mtext></mml:mtext></mml:mrow> and <mml:math< td=""><td>6.1</td><td>35</td></mml:math<>	6.1	35
29	xr/lns:mr/l_"http://www.w3.org/1998/Math/MathMil" display="inline">PdSi <mm xmlns:mml="http://www.w3.org/1998/Math/MathMl" display="inline"><mml:msub><mml:mrow< td=""><td>ll:math</td><td></td></mml:mrow<></mml:msub></mm 	ll:math	

#	Article	IF	CITATIONS
37	Lewis Acidity and Reactivity of Transition Metal Oxo Complexes. A Comparative Density Functional Study of CH3ReO3, CH3TcO3, and Their Base Adducts. Organometallics, 1997, 16, 1786-1792.	2.3	26
38	Simulation of Inorganic Nanotubes. Springer Series in Materials Science, 2007, , 33-57.	0.6	26
39	A Density Functional Study of Interactions at the Metal–Ceramic Interfaces Al/MgAl2O4 and Ag/MgAl2O4. Physica Status Solidi A, 1998, 166, 417-428.	1.7	25
40	Disentangling defect-induced ferromagnetism in SiC. Physical Review B, 2014, 89, .	3.2	25
41	The adsorption of CO on: a joint experimental and theoretical study. Surface Science, 1995, 330, 156-172.	1.9	24
42	Topological Hall Effect in Single Thick SrRuO ₃ Layers Induced by Defect Engineering. Advanced Electronic Materials, 2020, 6, 2000184.	5.1	24
43	Density-functional-based molecular-dynamics simulations of molten salts. Journal of Chemical Physics, 2005, 123, 134510.	3.0	23
44	Catalysts on the edge. Nature Nanotechnology, 2007, 2, 21-22.	31.5	23
45	Conformational Analysis of Aqueous BMP-2 Using Atomistic Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2011, 115, 1122-1130.	2.6	23
46	Strontium titanate: An all-in-one rechargeable energy storage material. Journal of Power Sources, 2014, 267, 700-705.	7.8	23
47	Hydrogen Bonds Control Single-Chain Conformation, Crystallinity, and Electron Transport in Isoelectronic Diketopyrrolopyrrole Copolymers. Chemistry of Materials, 2021, 33, 2635-2645.	6.7	23
48	Adsorption of nucleotides on the rutile (110) surface. International Journal of Materials Research, 2010, 101, 758-764.	0.3	22
49	Defect-induced magnetism in graphite through neutron irradiation. Physical Review B, 2014, 90, .	3.2	21
50	Probing a crystal's shortâ€range structure and local orbitals by Resonant Xâ€ray Diffraction methods. Crystal Research and Technology, 2014, 49, 43-54.	1.3	21
51	Enhancing the magnetic moment of ferrimagnetic NiCo2O4 via ion irradiation driven oxygen vacancies. APL Materials, 2018, 6, .	5.1	21
52	Ab initio analysis of electron energy loss spectra for complex oxides. Ultramicroscopy, 1999, 80, 145-151.	1.9	20
53	Surface modeling and chemical solution deposition of SrO(SrTiO3) Ruddlesden–Popper phases. Acta Materialia, 2010, 58, 4650-4659.	7.9	20
54	Aging of the (2+1)-dimensional Kardar-Parisi-Zhang model. Physical Review E, 2014, 89, 032146.	2.1	20

#	Article	IF	Citations
55	Elastic properties and electronic structure of vanadium silicides-a density functional investigation. Acta Materialia, 2009, 57, 50-55.	7.9	19
56	Non-equilibrium dynamics of magnetically anisotropic particles under oscillating fields. European Physical Journal E, 2016, 39, 69.	1.6	19
57	Nickel-enhanced graphitic ordering of carbon ad-atoms during physical vapor deposition. Carbon, 2016, 100, 656-663.	10.3	19
58	Transparent conductive tantalum doped tin oxide as selectively solar-transmitting coating for high temperature solar thermal applications. Solar Energy Materials and Solar Cells, 2019, 196, 84-93.	6.2	19
59	Analysis of the defect clusters in congruent lithium tantalate. Physical Review Materials, 2018, 2, .	2.4	18
60	Li doped Mo6S6 nanowires: elastic and electronic properties. Physica Status Solidi (B): Basic Research, 2006, 243, 3320-3324.	1.5	17
61	Transition metal sulfide clusters below the cluster–platelet transition: Theory and experiment. Physica Status Solidi (B): Basic Research, 2010, 247, 1069-1076.	1.5	17
62	Universality of (2+1)-dimensional restricted solid-on-solid models. Physical Review E, 2016, 94, 022107.	2.1	17
63	Towards Reconfigurable Electronics: Silicidation of Top-Down Fabricated Silicon Nanowires. Applied Sciences (Switzerland), 2019, 9, 3462.	2.5	16
64	Structure and properties of dimer, trimer and tetramer aggregates of methyltrioxorhenium (MTO): an ab initio study. Journal of Organometallic Chemistry, 1996, 514, 111-117.	1.8	15
65	Electronic structure of Ga84 cluster compounds. Physical Review B, 2004, 70, .	3.2	15
66	Impurity and vacancy clustering at the $\hat{1}$ £3(111)[1 $\hat{1}$ 3°10] grain boundary in strontium titanate. Chemical Physics, 2005, 309, 3-13.	1.9	15
67	Ab-initio calculation of exchange interactions in YMnO3. Computational Materials Science, 2008, 44, 79-81.	3.0	15
68	Molecular dynamics simulations of BMPâ€2 adsorption on a hydrophobic surface. Materialwissenschaft Und Werkstofftechnik, 2010, 41, 1048-1053.	0.9	15
69	Electron microscopy, spectroscopy, and first-principles calculations of Cs2O. Journal of Solid State Chemistry, 2005, 178, 1190-1196.	2.9	14
70	Feasible Device Architectures for Ultrascaled CNTFETs. IEEE Nanotechnology Magazine, 2018, 17, 100-107.	2.0	14
71	One-dimensional (Mo3S3)n clusters: Building blocks of clusters materials and ideal nanowires for molecular electronics. Chemical Physics Letters, 2009, 474, 127-131.	2.6	13
72	Tunable discotic building blocks for liquid crystalline displays. Journal of Luminescence, 2004, 108, 143-147.	3.1	12

#	Article	IF	Citations
73	Compositionally modulated ripples during composite film growth: Three-dimensional pattern formation at the nanoscale. Physical Review B, 2014, 89, .	3.2	12
74	Tetrahedral Amorphous Carbon Coatings for Friction Reduction of the Valve Train in Internal Combustion Engines. Advanced Engineering Materials, 2014, 16, 1226-1233.	3.5	12
75	Structural and electronic properties of Mo6S8 clusters deposited on a Au(111) surface investigated with density functional theory. Physical Review B, 2007, 75, .	3.2	11
76	Tilting of carbon encapsulated metallic nanocolumns in carbon-nickel nanocomposite films by ion beam assisted deposition. Applied Physics Letters, 2012, 101, 053112.	3.3	11
77	Hopping-Based Charge Transfer in Diketopyrrolopyrrole-Based Donor–Acceptor Polymers: A Theoretical Study. Journal of Physical Chemistry C, 2016, 120, 9581-9587.	3.1	11
78	Field-responsive colloidal assemblies defined by magnetic anisotropy. Physical Review E, 2019, 100, 012608.	2.1	11
79	Electron Mobility of Diketopyrrolopyrrole Copolymers Is Robust against Homocoupling Defects. Chemistry of Materials, 2021, 33, 668-677.	6.7	11
80	Observation of Room‶emperature Dark Exciton Emission in Nanopatchâ€Decorated Monolayer WSe ₂ on Metal Substrate. Advanced Optical Materials, 2021, 9, 2101801.	7.3	11
81	Carbon : nickel nanocomposite templates – predefined stable catalysts for diameter-controlled growth of single-walled carbon nanotubes. Nanoscale, 2016, 8, 14888-14897.	5.6	10
82	Validity of the dipole-selection rule for the Al-L2,3 edge of \hat{l}_{\pm} -Al2O3 under channeling conditions. Ultramicroscopy, 2001, 88, 253-263.	1.9	9
83	Semi-flexible star-shaped molecules: conformational analysis of nano-segregated mesogens forming columnar liquid-crystal phases. International Journal of Materials Research, 2005, 96, 988-997.	0.8	9
84	Surface-near modifications of SrTiO3 local symmetry due to nitrogen implantation investigated by grazing incidence XANES. Scripta Materialia, 2014, 86, 1-4.	5.2	9
85	Thermally induced formation of metastable nanocomposites in amorphous Cr-Zr-O thin films deposited using reactive ion beam sputtering. Thin Solid Films, 2016, 612, 430-436.	1.8	9
86	Dynamical universality classes of simple growth and lattice gas models. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 035003.	2.1	9
87	Success and limits of common final-state approximations. Ultramicroscopy, 2001, 86, 319-324.	1.9	8
88	Evidence for high negative charge densities in AIF3 coatings on oxidized silicon: a promising source for large drift fields. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 14, 259-262.	2.7	8
89	Polymorphism in liquid crystals from star-shaped mesogens. Philosophical Magazine Letters, 2007, 87, 883-891.	1.2	8
90	TiSi ₂ nanostructures – enhanced conductivity at nanoscale?. Physica Status Solidi (B): Basic Research, 2007, 244, 3593-3600.	1.5	8

#	Article	IF	CITATIONS
91	Elastic and piezoresistive properties of nickel carbides from first principles. Physical Review B, 2017, 95, .	3.2	8
92	Functional thiols as repair and doping agents of defective MoS ₂ monolayers. Journal of Physics Condensed Matter, 2018, 30, 235302.	1.8	8
93	Tunable Magnetic Vortex Dynamics in Ion-Implanted Permalloy Disks. ACS Applied Materials & Samp; Interfaces, 2020, 12, 27812-27818.	8.0	8
94	Density-functional study of Mo4S6 on Au(111). Applied Physics A: Materials Science and Processing, 2006, 82, 175-179.	2.3	7
95	Microstructural Studies of Fluorineâ€ <scp>I</scp> mplanted Titanium Aluminides for Enhanced Environmental Durability. Advanced Engineering Materials, 2014, 16, 52-59.	3.5	7
96	Influence of Electric Fields on the Electron Transport in Donor–Acceptor Polymers. Journal of Physical Chemistry C, 2017, 121, 3714-3723.	3.1	7
97	Electron transport through NiSi $<$ sub $>$ 2 $<$ /sub $>$ â \in "Si contacts and their role in reconfigurable field-effect transistors. Journal of Physics Condensed Matter, 2019, 31, 355002.	1.8	7
98	Directionality of metal-induced crystallization and layer exchange in amorphous carbon/nickel thin film stacks. Carbon, 2020, 159, 656-667.	10.3	7
99	Formation and crystallographic orientation of NiSi2–Si interfaces. Journal of Applied Physics, 2020, 128, 085301.	2.5	7
100	Modelling ferroic functional elements. Journal of Computer-Aided Materials Design, 2007, 14, 211-218.	0.7	6
101	Two-scale modeling of adsorption processes at structured surfaces. Physica D: Nonlinear Phenomena, 2009, 238, 117-125.	2.8	6
102	Environment Controlled Dewetting of Rh–Pd Bilayers: A Route for Core–Shell Nanostructure Synthesis. Journal of Physical Chemistry C, 2012, 116, 14401-14407.	3.1	6
103	Percolated Si:SiO2 Nanocomposites: Oven- vs. Millisecond Laser-Induced Crystallization of SiOx Thin Films. Nanomaterials, 2018, 8, 525.	4.1	6
104	Probing interlayer excitons in a vertical van der Waals p-n junction using a scanning probe microscopy technique. Journal of Physics Condensed Matter, 2019, 31, 114001.	1.8	6
105	Radially resolved electronic structure and charge carrier transport in silicon nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 108, 181-186.	2.7	6
106	Theoretical evidence for the Peierls transition in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>NbO</mml:mi><mml:mn>2<td>:m8.2<td>nl:masub></td></td></mml:mn></mml:msub></mml:math>	:m 8.2 <td>nl:masub></td>	nl:masub>
107	Anisotropy of colloidal components propels field-activated stirrers and movers. Physical Review Research, 2020, 2, .	3.6	6
108	Controlling excitons in the quantum tunneling regime in a hybrid plasmonic/2D semiconductor interface. Applied Physics Reviews, 2022, 9, 031401.	11.3	6

#	Article	IF	Citations
109	Current without external bias and diode effect in shuttling transport of nanoshafts. New Journal of Physics, 2008, 10, 103014.	2.9	5
110	SWCNT growth from C:Ni nanocomposites. Physica Status Solidi (B): Basic Research, 2012, 249, 2357-2360.	1.5	5
111	Theoretical study on the CHâ< NC hydrogen bond interaction in thiophene-based molecules. Computational and Theoretical Chemistry, 2013, 1005, 45-52.	2.5	5
112	Effects of the TiO2 buffer thickness on SrTiO3 (111) epitaxial films grown on GaN (0002). Journal of Applied Physics, 2013, 113, 154103.	2.5	5
113	DFT Investigation of the Heterostructure GaP(001) on Si(001). Nanoscience and Nanotechnology Letters, 2013, 5, 73-77.	0.4	5
114	Local scale-invariance of the 2  +  1 dimensional Kardar–Parisi–Zhang model. Journal of Phy Mathematical and Theoretical, 2017, 50, 12LT01.	sics A: 2.1	5
115	Influence of Nickel Catalyst Morphology on Layer-Exchange-Based Carbon Crystallisation of Ni/a-C Bilayers. Physica Status Solidi (B): Basic Research, 2017, 254, 1700234.	1.5	5
116	Cluster Tool for In Situ Processing and Comprehensive Characterization of Thin Films at High Temperatures. Analytical Chemistry, 2018, 90, 7837-7842.	6.5	5
117	Singleâ€Molecule Doping: Conductance Changed By Transition Metal Centers in Salen Molecules. Advanced Electronic Materials, 2021, 7, 2100252.	5.1	5
118	Autocorrected off-axis holography of two-dimensional materials. Physical Review Research, 2020, 2, .	3.6	5
119	Density-functional investigation of alloyed metallic nanowires. Computer Physics Communications, 2005, 169, 57-59.	7.5	4
120	Tribological Aspects of Carbon-Based Nanocoatings – Theory and Simulation. Zeitschrift Fur Physikalische Chemie, 2011, 225, 379-387.	2.8	4
121	Stoichiometry variation for the atomic layer deposition of SrxTiyOz from Sr(iPr3Cp)2, Ti[N(CH3)2]4 and H2O. Thin Solid Films, 2015, 577, 134-142.	1.8	4
122	Suppressing correlations in massively parallel simulations of lattice models. Computer Physics Communications, 2017, 220, 205-211.	7. 5	4
123	Tuning the conductance of a molecular wire by the interplay of donor and acceptor units. Nanoscale, 2018, 10, 17131-17139.	5.6	4
124	Formation, structure, and optical properties of copper chromite thin films for high-temperature solar absorbers. Materialia, 2021, 18, 101156.	2.7	4
125	A combined experimental and theoretical study of 1,4-bis(phenylethynyl)-2,5-bis(ethoxy)benzene adsorption on Au(111). Surface Science, 2021, 712, 121877.	1.9	4
126	Oxidative corrosion of adhesive interlayers. Physical Chemistry Chemical Physics, 2001, 3, 5140-5144.	2.8	3

#	Article	IF	CITATIONS
127	Theoretical investigation of an in situ k-restore process for damaged ultra-low-k materials based on plasma enhanced fragmentation. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, 052203.	1.2	3
128	Comparison of atomistic quantum transport and numerical device simulation for carbon nanotube field-effect transistors. , 2016, , .		3
129	Rotational friction of dipolar colloids measured by driven torsional oscillations. Scientific Reports, 2016, 6, 34193.	3.3	3
130	Localization of edge states at triangular defects in periodic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:mi mathvariant="normal">S</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> monolayers. Physical Review Materials, 2021, 5, .	i 2.4	3
131	Structure, Optical and Mechanical Properties of Direct Current Magnetron Sputtered Carbon: Vanadium Nanocomposite Thin Films. Nanoscience and Nanotechnology Letters, 2013, 5, 94-100.	0.4	3
132	Low-temperature modeling for degenerate and frustrated Heisenberg systems with anisotropy. Computer Physics Communications, 2010, 181, 806-812.	7.5	2
133	A Twoâ€Parameter Model for Colloidal Particles with an Extended Magnetic Cap. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900506.	1.8	2
134	Interactions of Ruddlesden-Popper Phases and Migration-Induced Field-Stabilized Polar Phase in Strontium Titanate. Crystals, 2021, 11, 693.	2.2	2
135	Theoretical Investigation of Interfaces. Springer Series in Materials Science, 2007, , 91-122.	0.6	2
136	Organogels from Diketopyrrolopyrrole Copolymer Ionene/Polythiophene Blends Exhibit Ground-State Single Electron Transfer in the Solid State. Macromolecules, 2022, 55, 4979-4994.	4.8	2
137	Binding properties between ferroic oxides and metals. European Physical Journal B, 2009, 67, 57-62.	1.5	1
138	Phase Segregation and Transformations in Arsenic-Implanted ZnO Thin Films. Journal of Physical Chemistry C, 2011, 115, 8798-8807.	3.1	1
139	Band gap tuning of carbon nanotubes for sensor and interconnect applications — A quantum simulation study. , 2012, , .		1
140	Resistive switching in thermally oxidized titanium films. , 2013, , .		1
141	Theoretical investigation of in situ k-restore processes for damaged ultra-low-k materials. , 2015, , .		1
142	Theoretical investigation of in situ k-restore processes for damaged ultra-low-k dielectrics. Microelectronic Engineering, 2016, 156, 121-125.	2.4	1
143	Bit-vectorized GPU implementation of a stochastic cellular automaton model for surface growth. , 2016, , .		1
144	Phase Transitions in C:Ni Nanocomposite Templates during Diameterâ€Selective CVD Synthesis of SWCNTs. Physica Status Solidi (B): Basic Research, 2017, 254, 1700228.	1.5	1

#	Article	IF	CITATIONS
145	Direct Correction of Residual Symmetric Aberrations in Electron Holograms of Weak Phase Objects. Microscopy and Microanalysis, 2019, 25, 98-99.	0.4	1
146	Describing chain-like assembly of ethoxygroup-functionalized organic molecules on $Au(111)$ using high-throughput simulations. Scientific Reports, 2021, 11, 14649.	3.3	1
147	Quantum transport and microwave scattering on fractal lattices. Zeitschrift Fur Kristallographie - Crystalline Materials, 2022, 237, 179-190.	0.8	1
148	Deposition of Nanosized Amino Acid Functionalized Bismuth Oxido Clusters on Gold Surfaces. Nanomaterials, 2022, 12, 1815.	4.1	1
149	Molecular Dynamics. ChemInform, 2004, 35, no.	0.0	0
150	Reduction of surface coverage of finite systems due to geometrical steps. European Physical Journal B, 2008, 62, 311-317.	1.5	0
151	Back Cover: High resolution TEM study of WS ₂ nanotubes (Phys. Status Solidi B 11/2011). Physica Status Solidi (B): Basic Research, 2011, 248, .	1.5	0
152	Closed‣oop Defect States in 2D Materials with Honeycomb Lattice Structure: Molybdenum Disulfide. Physica Status Solidi (B): Basic Research, 2021, 258, 2100214.	1.5	0
153	DFT modelling of defects in strontium titanate. Acta Crystallographica Section A: Foundations and Advances, 2009, 65, s208-s209.	0.3	0
154	Reversible structural changes by electrostatic fields in strontium titanate at room temperature. Acta Crystallographica Section A: Foundations and Advances, 2009, 65, s232-s232.	0.3	0
155	Correlation of structure and conductance in nanowires. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s155-s155.	0.3	0
156	XRD, XAS and DFT study of the multiferroic mixed-valence compound YMn2O5. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s39-s40.	0.3	0
157	Structure variations within certain rare earth disilicides. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C287-C287.	0.1	O