JÃ,rgen Erik Nielsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7397749/publications.pdf

Version: 2024-02-01

65 papers 2,337 citations

393982 19 h-index 223531 46 g-index

72 all docs

72 docs citations

72 times ranked 4415 citing authors

#	Article	IF	CITATIONS
1	Six generations of <i>CHMP2B</i> â€mediated Frontotemporal Dementia: Clinical features, predictive testing, progression, and survival. Acta Neurologica Scandinavica, 2022, 145, 529-540.	1.0	4
2	Peripheral helper T cells in the pathogenesis of multiple sclerosis. Multiple Sclerosis Journal, 2022, 28, 1340-1350.	1.4	3
3	Widening the spectrum of spinocerebellar ataxia autosomal recessive type 10 (SCAR10). BMJ Case Reports, 2022, 15, e248228.	0.2	1
4	Impairments of social cognition significantly predict the progression of functional decline in Huntington's disease: A 6-year follow-up study. Applied Neuropsychology Adult, 2022, , 1-10.	0.7	3
5	Decreased CSF oxytocin relates to measures of social cognitive impairment in Huntington's disease patients. Parkinsonism and Related Disorders, 2022, 99, 23-29.	1.1	8
6	Increased Intrathecal Activity of Follicular Helper T Cells in Patients With Relapsing-Remitting Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	3.1	11
7	Novel Homozygous Truncating Variant Widens the Spectrum of Early-Onset Multisystemic SYNE1 Ataxia. Cerebellum, 2021, , 1.	1.4	O
8	Endophenotypical drift in Huntington's disease: a 5-year follow-up study. Orphanet Journal of Rare Diseases, 2021, 16, 340.	1.2	3
9	F21â€On the association between apathy and deficits of social cognition and executive functions in huntington's disease. , 2021, , .		O
10	CCG•CGG interruptions in highâ€penetrance SCA8 families increase RAN translation and protein toxicity. EMBO Molecular Medicine, 2021, 13, e14095.	3.3	12
11	Astrocytic reactivity triggered by defective autophagy and metabolic failure causes neurotoxicity in frontotemporal dementia type 3. Stem Cell Reports, 2021, 16, 2736-2751.	2.3	23
12	Cortical Frontoparietal Network Dysfunction in -Frontotemporal Dementia. Frontiers in Aging Neuroscience, 2021, 13, 714220.	1.7	0
13	Intellectual Curiosity and Action Initiation are Subtypes of Apathy Affected in Huntington Disease Gene Expansion Carriers. Cognitive and Behavioral Neurology, 2021, 34, 295-302.	0.5	2
14	Intellectual curiosity and action initiation are subtypes of apathy affected in Huntington's disease gene expansion carriers. Alzheimer's and Dementia, 2021, 17, .	0.4	0
15	Early Intrathecal T Helper 17.1 Cell Activity in Huntington Disease. Annals of Neurology, 2020, 87, 246-255.	2.8	24
16	Enhancement of Autophagy and Solubilization of Ataxin-2 Alleviate Apoptosis in Spinocerebellar Ataxia Type 2 Patient Cells. Cerebellum, 2020, 19, 165-181.	1.4	11
17	Mania triggered by levodopa treatment in a patient with frontotemporal dementia caused by A C9orf72 repeat expansion: A case report. Clinical Neurology and Neurosurgery, 2020, 198, 106147.	0.6	3
18	Paroxysmal Cranial Dyskinesia and Nailâ€Patella Syndrome Caused by a Novel Variant in the LMX1B Gene. Movement Disorders, 2020, 35, 2343-2347.	2.2	2

#	Article	IF	CITATIONS
19	Glutamate-glutamine homeostasis is perturbed in neurons and astrocytes derived from patient iPSC models of frontotemporal dementia. Molecular Brain, 2020, 13, 125.	1.3	36
20	Peripheral neuropathy in hereditary spastic paraplegia caused by REEP1 variants. Journal of Neurology, 2019, 266, 735-744.	1.8	11
21	Genotypeâ€phenotype correlations, dystonia and disease progression in spinocerebellar ataxia type 14. Movement Disorders, 2018, 33, 1119-1129.	2.2	26
22	Beneficial effect of intravenous immunoglobulin treatment in a patient with antiphospholipid syndrome associated chorea. Journal of the Neurological Sciences, 2018, 390, 52-53.	0.3	2
23	Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurology, The, 2018, 17, 548-558.	4.9	97
24	CSF neurofilament light concentration is increased in presymptomatic <i>CHMP2B</i> mutation carriers. Neurology, 2018, 90, e157-e163.	1.5	11
25	Quantitative Measurements of Motor Function in Alzheimer's Disease, Frontotemporal Dementia, and Dementia with Lewy Bodies: A Proof-of-Concept Study. Dementia and Geriatric Cognitive Disorders, 2018, 46, 168-179.	0.7	9
26	Inflammatory markers of CHMP2B-mediated frontotemporal dementia. Journal of Neuroimmunology, 2018, 324, 136-142.	1.1	10
27	Sporadic Creutzfeldt-Jakob Disease in a Woman Married Into a Gerstmann-Strässler-Scheinker Family: An Investigation of Prions Transmission via Microchimerism. Journal of Neuropathology and Experimental Neurology, 2018, 77, 673-684.	0.9	6
28	D03â€Quality control for plasma and cerebrospinal fluid samples using mass spectrometry. , 2018, , .		0
29	SCA28: Novel Mutation in the AFG3L2 Proteolytic Domain Causes a Mild Cerebellar Syndrome with Selective Type-1 Muscle Fiber Atrophy. Cerebellum, 2017, 16, 62-67.	1.4	16
30	A Novel TTBK2 De Novo Mutation in a Danish Family with Early-Onset Spinocerebellar Ataxia. Cerebellum, 2017, 16, 268-271.	1.4	15
31	Patient iPSC-Derived Neurons for Disease Modeling of Frontotemporal Dementia with Mutation in CHMP2B. Stem Cell Reports, 2017, 8, 648-658.	2.3	65
32	Characterization of energy and neurotransmitter metabolism in cortical glutamatergic neurons derived from human induced pluripotent stem cells: A novel approach to study metabolism in human neurons. Neurochemistry International, 2017, 106, 48-61.	1.9	14
33	Hereditary cerebral small vessel disease and stroke. Clinical Neurology and Neurosurgery, 2017, 155, 45-57.	0.6	62
34	Evidence of oxidative stress and mitochondrial dysfunction in spinocerebellar ataxia type 2 (SCA2) patient fibroblasts: Effect of coenzyme Q10 supplementation on these parameters. Mitochondrion, 2017, 34, 103-114.	1.6	42
35	Defining active progressive multiple sclerosis. Multiple Sclerosis Journal, 2017, 23, 1727-1735.	1.4	34
36	TMEM106B and ApoE polymorphisms in CHMP2B-mediated frontotemporal dementia (FTD-3). Neurobiology of Aging, 2017, 59, 221.e1-221.e7.	1.5	4

#	Article	IF	CITATIONS
37	Neurons derived from sporadic Alzheimer's disease iPSCs reveal elevated TAU hyperphosphorylation, increased amyloid levels, and GSK3B activation. Alzheimer's Research and Therapy, 2017, 9, 90.	3.0	161
38	Generation of spinocerebellar ataxia type 2 patient-derived iPSC line H196. Stem Cell Research, 2016, 16, 199-201.	0.3	4
39	Liver function in Huntington's disease assessed by blood biochemical analyses in a clinical setting. Journal of the Neurological Sciences, 2016, 362, 326-332.	0.3	12
40	Generation of an isogenic, gene-corrected control cell line of the spinocerebellar ataxia type 2 patient-derived iPSC line H196. Stem Cell Research, 2016, 16, 162-165.	0.3	10
41	Induced pluripotent stem cell - derived neurons for the study of spinocerebellar ataxia type 3. Stem Cell Research, 2016, 17, 306-317.	0.3	27
42	Selected CSF biomarkers indicate no evidence of early neuroinflammation in Huntington disease. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e287.	3.1	53
43	Personality traits in Huntington's disease: An exploratory study of gene expansion carriers and nonâ€carriers. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 1153-1160.	1.1	6
44	Generation of an isogenic, gene-corrected control cell line of the spinocerebellar ataxia type 2 patient-derived iPSC line H271. Stem Cell Research, 2016, 16, 180-183.	0.3	15
45	Generation of a human induced pluripotent stem cell line via CRISPR-Cas9 mediated integration of a site-specific homozygous mutation in CHMP2B. Stem Cell Research, 2016, 17, 151-153.	0.3	5
46	Generation of a human induced pluripotent stem cell line via CRISPR-Cas9 mediated integration of a site-specific heterozygous mutation in CHMP2B. Stem Cell Research, 2016, 17, 148-150.	0.3	6
47	Do I misconstrue? Sarcasm detection, emotion recognition, and theory of mind in Huntington disease Neuropsychology, 2016, 30, 181-189.	1.0	39
48	Generation of spinocerebellar ataxia type 2 patient-derived iPSC line H271. Stem Cell Research, 2016, 16, 159-161.	0.3	3
49	Generation of an isogenic, gene-corrected control cell line of the spinocerebellar ataxia type 2 patient-derived iPSC line H266. Stem Cell Research, 2016, 16, 202-205.	0.3	17
50	Generation of spinocerebellar ataxia type 2 patient-derived iPSC line H266. Stem Cell Research, 2016, 16, 166-169.	0.3	3
51	Generation of spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cell line SCA3.A11. Stem Cell Research, 2016, 16, 553-556.	0.3	7
52	Generation of spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cell line SCA3.B11. Stem Cell Research, 2016, 16, 589-592.	0.3	9
53	Social Cognition, Executive Functions and Self-Report of Psychological Distress in Huntington's Disease. PLOS Currents, 2016, 8, .	1.4	7
54	Frontotemporal dementia caused by CHMP2B mutation is characterised by neuronal lysosomal storage pathology. Acta Neuropathologica, 2015, 130, 511-523.	3.9	79

#	Article	IF	CITATIONS
55	Assessing Impairment of Executive Function and Psychomotor Speed in Premanifest and Manifest Huntington's Disease Gene-expansion Carriers. Journal of the International Neuropsychological Society, 2015, 21, 193-202.	1.2	25
56	Exploring Genetic Factors Involved in Huntington Disease Age of Onset: E2F2 as a New Potential Modifier Gene. PLoS ONE, 2015, 10, e0131573.	1.1	11
57	Reduced ceramide synthase 2 activity causes progressive myoclonic epilepsy. Annals of Clinical and Translational Neurology, 2014, 1, 88-98.	1.7	50
58	Epigenetic remodelling and dysregulation of DLGAP4 is linked with early-onset cerebellar ataxia. Human Molecular Genetics, 2014, 23, 6163-6176.	1.4	19
59	Reduction in mitochondrial DNA copy number in peripheral leukocytes after onset of Huntington's disease. Mitochondrion, 2014, 17, 14-21.	1.6	54
60	YKL-40 in cerebrospinal fluid in Huntington's disease – A role in pathology or a nonspecific response to inflammation?. Parkinsonism and Related Disorders, 2014, 20, 1301-1303.	1.1	20
61	A clinical classification acknowledging neuropsychiatric and cognitive impairment in Huntington's disease. Orphanet Journal of Rare Diseases, 2014, 9, 114.	1.2	50
62	Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurology, The, 2014, 13, 686-699.	4.9	302
63	Antisense Gene Silencing: Therapy for Neurodegenerative Disorders?. Genes, 2013, 4, 457-484.	1.0	14
64	ATXN2 with intermediate-length CAG/CAA repeats does not seem to be a risk factor in hereditary spastic paraplegia. Journal of the Neurological Sciences, 2012, 321, 100-102.	0.3	7
65	Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nature Genetics, 2005, 37, 806-808.	9.4	752