Guy Van Assche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7397289/publications.pdf

Version: 2024-02-01

164 papers 5,543 citations

39 h-index 102487 66 g-index

164 all docs

164 docs citations

164 times ranked 5869 citing authors

#	Article	IF	CITATIONS
1	Self-healing soft pneumatic robots. Science Robotics, 2017, 2, .	17.6	359
2	Phase Diagram of P3HT/PCBM Blends and Its Implication for the Stability of Morphology. Journal of Physical Chemistry B, 2009, 113, 1587-1591.	2.6	333
3	Reaction mechanism, kinetics and high temperature transformations of geopolymers. Journal of Materials Science, 2007, 42, 2982-2996.	3.7	170
4	A review on self-healing polymers for soft robotics. Materials Today, 2021, 47, 187-205.	14.2	150
5	Modulated differential scanning calorimetry: isothermal cure and vitrification of thermosetting systems. Thermochimica Acta, 1995, 268, 121-142.	2.7	141
6	Kinetics of Demixing and Remixing in Poly(N-isopropylacrylamide)/Water Studied by Modulated Temperature DSC. Macromolecules, 2004, 37, 9596-9605.	4.8	141
7	A self-healing polymer network based on reversible covalent bonding. Reactive and Functional Polymers, 2013, 73, 413-420.	4.1	137
8	The thermal degradation of poly(vinyl acetate) and poly(ethylene-co-vinyl acetate), Part I: Experimental study of the degradation mechanism. Polymer Degradation and Stability, 2008, 93, 800-810.	5.8	117
9	Restricted chain segment mobility in poly(amide) 6/clay nanocomposites evidenced by quasi-isothermal crystallization. Polymer, 2006, 47, 826-835.	3.8	97
10	SECM study of defect repair in self-healing polymer coatings on metals. Electrochemistry Communications, 2011, 13, 169-173.	4.7	89
11	Modulated differential scanning calorimetry: Non-isothermal cure, vitrification, and devitrification of thermosetting systems. Thermochimica Acta, 1996, 286, 209-224.	2.7	88
12	Isocyanate free condensed tannin-based polyurethanes. European Polymer Journal, 2015, 67, 513-526.	5.4	88
13	Towards multifunctional cellulosic fabric: UV photo-reduction and in-situ synthesis of silver nanoparticles into cellulose fabrics. International Journal of Biological Macromolecules, 2017, 98, 877-886.	7.5	85
14	Investigation of the self-healing properties of shape memory polyurethane coatings with the †odd random phase multisine†electrochemical impedance spectroscopy. Electrochimica Acta, 2010, 55, 6195-6203.	5.2	81
15	Processing of Selfâ€Healing Polymers for Soft Robotics. Advanced Materials, 2022, 34, e2104798.	21.0	80
16	Novel synthetic strategy toward shape memory polyurethanes with a well-defined switching temperature. Polymer, 2009, 50, 4447-4454.	3.8	77
17	Improved Photovoltaic Performance of a Semicrystalline Narrow Bandgap Copolymer Based on $4 < i > H < i > Cyclopenta[2,1-b < i > 3,4-b < i>a $	6.7	73
18	Modulated temperature differential scanning calorimetry: Cure, vitrification, and devitrification of thermosetting systems. Thermochimica Acta, 1997, 304-305, 317-334.	2.7	70

#	Article	IF	CITATIONS
19	Measurements of Thermal Properties of Carbon/Epoxy and Glass/Epoxy using Modulated Temperature Differential Scanning Calorimetry. Journal of Composite Materials, 2004, 38, 163-175.	2.4	68
20	A combined mechanical, microscopic and local electrochemical evaluation of self-healing properties of shape-memory polyurethane coatings. Electrochimica Acta, 2011, 56, 9619-9626.	5.2	65
21	Thermal Stability of Poly[2-methoxy-5-(2′-phenylethoxy)-1,4-phenylenevinylene] (MPE-PPV):Fullerene Bulk Heterojunction Solar Cells. Macromolecules, 2011, 44, 8470-8478.	4.8	61
22	The influence of stereochemistry on the reactivity of the Diels–Alder cycloaddition and the implications for reversible network polymerization. Polymer Chemistry, 2019, 10, 473-485.	3.9	61
23	Anthracene-Based Thiol–Ene Networks with Thermo-Degradable and Photo-Reversible Properties. Macromolecules, 2017, 50, 1930-1938.	4.8	59
24	Self-healing property characterization of reversible thermoset coatings. Journal of Thermal Analysis and Calorimetry, 2011, 105, 805-809.	3.6	58
25	Modeling and experimental verification of the kinetics of reacting polymer systems. Thermochimica Acta, 2002, 388, 327-341.	2.7	54
26	Demixing and Remixing Kinetics of Poly(2-isopropyl-2-oxazoline) (PIPOZ) Aqueous Solutions Studied by Modulated Temperature Differential Scanning Calorimetry. Macromolecules, 2010, 43, 6853-6860.	4.8	54
27	Additive Manufacturing for Self-Healing Soft Robots. Soft Robotics, 2020, 7, 711-723.	8.0	54
28	Title is missing!. Magyar Apróvad Közlemények, 1998, 54, 585-604.	1.4	53
29	Influence of Macromolecular Architecture on the Thermal Response Rate of Amphiphilic Copolymers, Based on Poly(N-isopropylacrylamide) and Poly(oxyethylene), in Water. Macromolecules, 2007, 40, 3765-3772.	4.8	53
30	Roles of in situ surface modification in controlling the growth and crystallization of CaCO3 nanoparticles, and their dispersion in polymeric materials. Journal of Materials Science, 2015, 50, 7908-7918.	3.7	52
31	Role of Complex Formation in the Polymerization Kinetics of Modified Epoxyâ°'Amine Systems. Macromolecules, 2005, 38, 2281-2288.	4.8	47
32	Phase Transformations in Aqueous Low Molar Mass Poly(vinyl methyl ether) Solutions:Â Theoretical Prediction and Experimental Validation of the Peculiar Solvent Melting Line, Bimodal LCST, and (Adjacent) UCST Miscibility Gaps. Journal of Physical Chemistry B, 2007, 111, 1288-1295.	2.6	47
33	One-component Diels–Alder based polyurethanes: a unique way to self-heal. RSC Advances, 2017, 7, 48047-48053.	3.6	47
34	Sol-gel hot injection synthesis of ZnO nanoparticles into a porous silica matrix and reaction mechanism. Materials and Design, 2017, 119, 270-276.	7.0	46
35	A Green, Simple Chemical Route for the Synthesis of Pure Nanocalcite Crystals. Crystal Growth and Design, 2015, 15, 573-580.	3.0	45
36	Thermophysical characterization of a reversible dynamic polymer network based on kinetics and equilibrium of an amorphous furan-maleimide Diels-Alder cycloaddition. Polymer, 2017, 120, 176-188.	3.8	45

#	Article	IF	CITATIONS
37	Synthesis, growth mechanism, and photocatalytic activity of Zinc oxide nanostructures: porous microparticles versus nonporous nanoparticles. Journal of Materials Science, 2017, 52, 2746-2762.	3.7	43
38	Toward bulk heterojunction polymer solar cells with thermally stable active layer morphology. Journal of Photonics for Energy, 2014, 4, 040997.	1.3	42
39	Seed-Mediated Hot-Injection Synthesis of Tiny Ag Nanocrystals on Nanoscale Solid Supports and Reaction Mechanism. ACS Applied Materials & Samp; Interfaces, 2016, 8, 10551-10561.	8.0	42
40	Reaction kinetics modeling and thermal properties of epoxy-amines as measured by modulated-temperature DSC. I. Linear step-growth polymerization of DGEBA + aniline. Journal of Applied Polymer Science, 2004, 91, 2798-2813.	2.6	41
41	The thermal degradation of poly(vinyl acetate) and poly(ethylene-co-vinyl acetate), Part II: Modelling the degradation kinetics. Polymer Degradation and Stability, 2008, 93, 1222-1230.	5.8	41
42	Influence of temperature and UV intensity on photo-polymerization reaction studied by photo-DSC. Journal of Thermal Analysis and Calorimetry, 2012, 110, 287-294.	3.6	40
43	Interrelations between mechanism, kinetics, and rheology in an isothermal cross-linking chain-growth copolymerisation. Polymer, 2001, 42, 2959-2968.	3.8	39
44	A Pneumatic Artificial Muscle Manufactured Out of Self-Healing Polymers That Can Repair Macroscopic Damages. IEEE Robotics and Automation Letters, 2018, 3, 16-21.	5.1	39
45	Reaction kinetics modeling and thermal properties of epoxy-amines as measured by modulated-temperature DSC. II. Network-forming DGEBA + MDA. Journal of Applied Polymer Science, 2004, 91, 2814-2833.	2.6	38
46	Development of a self-healing soft pneumatic actuator: a first concept. Bioinspiration and Biomimetics, 2015, 10, 046007.	2.9	38
47	Synthesis and evaluation of 9-substituted anthracenes with potential in reversible polymer systems. Tetrahedron, 2016, 72, 4303-4311.	1.9	37
48	Room-temperature versus heating-mediated healing of a Diels-Alder crosslinked polymer network. Polymer, 2018, 153, 453-463.	3.8	37
49	Atomic force microscopy–based study of self-healing coatings based on reversible polymer network systems. Journal of Intelligent Material Systems and Structures, 2014, 25, 40-46.	2.5	36
50	Selection of healing agents for a vascular self-healing application. Polymer Testing, 2017, 62, 302-310.	4.8	36
51	The kinetic analysis of isothermal curing reaction of an epoxy resin-glassflake nanocomposite. Thermochimica Acta, 2012, 549, 81-86.	2.7	35
52	Evaluation of the Yasuda parameter for the atmospheric plasma deposition of allyl methacrylate. RSC Advances, 2015, 5, 27449-27457.	3.6	35
53	Self-Healing and High Interfacial Strength in Multi-Material Soft Pneumatic Robots via Reversible Diels–Alder Bonds. Actuators, 2020, 9, 34.	2.3	35
54	Interphase formation in model composites studied by micro-thermal analysis. Polymer, 2002, 43, 4605-4610.	3.8	33

#	Article	IF	CITATIONS
55	Qualitative assessment of nanofiller dispersion in poly(ε-caprolactone) nanocomposites by mechanical testing, dynamic rheometry and advanced thermal analysis. European Polymer Journal, 2010, 46, 984-996.	5.4	33
56	Morphologic study of steady state electrospun polyamide 6 nanofibres. Journal of Applied Polymer Science, 2011, 119, 2984-2990.	2.6	33
57	Creation of a nanovascular network by electrospun sacrificial nanofibers for self-healing applications and its effect on the flexural properties of the bulk material. Polymer Testing, 2016, 54, 78-83.	4.8	32
58	Room Temperature Self-Healing in Soft Pneumatic Robotics: Autonomous Self-Healing in a Diels-Alder Polymer Network. IEEE Robotics and Automation Magazine, 2020, 27, 44-55.	2.0	32
59	Calibration and performance of a fast-scanning DSCâ€"Project RHC. Thermochimica Acta, 2012, 530, 64-72.	2.7	31
60	Supramolecular thermoplastics and thermoplastic elastomer materials with self-healing ability based on oligomeric charged triblock copolymers. NPG Asia Materials, 2017, 9, e385-e385.	7.9	30
61	Physicochemical characterization of nanomaterials: polymorph, composition, wettability, and thermal stability., 2018,, 255-278.		29
62	Phase separation in polymer blend thin films studied by differential AC chip calorimetry. Polymer, 2010, 51, 647-654.	3.8	28
63	Phase behavior of PCBM blends with different conjugated polymers. Physical Chemistry Chemical Physics, 2011, 13, 12285.	2.8	27
64	The Impact of Double Bonds in the APPECVD of Acrylate-Like Precursors. Plasma Processes and Polymers, 2013, 10, 857-863.	3.0	27
65	Surface Characterization of Atmospheric Pressure Plasmaâ€Deposited Allyl Methacrylate and Acrylic Acid Based Coatings. Plasma Processes and Polymers, 2013, 10, 564-571.	3.0	27
66	A Polystyrene-Supported Tin Trichloride Catalyst with a C11-Spacer. Catalysis Monitoring Using High-Resolution Magic Angle Spinning NMR. Organometallics, 2007, 26, 6718-6725.	2.3	26
67	Evaluation of curing kinetic parameters of an epoxy/polyaminoamide/nano-glassflake system by non-isothermal differential scanning calorimetry. Thermochimica Acta, 2012, 533, 10-15.	2.7	26
68	Aromatic sulfonation with sulfur trioxide: mechanism and kinetic model. Chemical Science, 2017, 8, 680-688.	7.4	26
69	Electrochemical impedance spectroscopy characterization and parameterization of lithium nickel manganese cobalt oxide pouch cells: dependency analysis of temperature and state of charge. lonics, 2019, 25, 111-123.	2.4	26
70	Frequency dependent heat capacity in the cure of epoxy resins. Thermochimica Acta, 2001, 377, 125-130.	2.7	25
71	Diffusion- and Mobility-Controlled Self-Healing Polymer Networks with Dynamic Covalent Bonding. Macromolecules, 2019, 52, 8440-8452.	4.8	25
72	A novel approach for the closure of large damage in self-healing elastomers using magnetic particles. Polymer, 2020, 204, 122819.	3.8	25

#	Article	IF	CITATIONS
73	The effect of nano-sized filler particles on the crystalline-amorphous interphase and thermal properties in polyester nanocomposites. Polymer, 2012, 53, 1494-1506.	3.8	24
74	Toward Self-Healing Actuators: A Preliminary Concept. IEEE Transactions on Robotics, 2016, 32, 736-743.	10.3	24
75	Title is missing!. Magyar Apróvad Közlemények, 2000, 59, 305-318.	1.4	23
76	Demixing and Remixing Kinetics in Aqueous Dispersions of Poly($\langle i \rangle N \langle i \rangle$ -isopropylacrylamide) (PNIPAM) Brushes Bound to Gold Nanoparticles Studied by Means of Modulated Temperature Differential Scanning Calorimetry. Macromolecules, 2009, 42, 5317-5327.	4.8	23
77	Isothermal structure development in submicron P3HT layers studied by fast scanning chip calorimetry. Polymer, 2015, 57, 39-44.	3.8	23
78	Coupling the Microscopic Healing Behaviour of Coatings to the Thermoreversible Diels-Alder Network Formation. Coatings, 2019, 9, 13.	2.6	23
79	Adjacent UCST Phase Behavior in Aqueous Solutions of Poly(vinyl methyl ether): Detection of a Narrow Low Temperature UCST in the Lower Concentration Range. Macromolecules, 2011, 44, 993-998.	4.8	22
80	Ester-functionalized poly(3-alkylthiophene) copolymers: Synthesis, physicochemical characterization and performance in bulk heterojunction organic solar cells. Organic Electronics, 2013, 14, 523-534.	2.6	22
81	Catalytic properties of cross-linked polystyrene grafted diorganotins in a model transesterification and the ring-opening polymerization of É>-caprolactone. Applied Organometallic Chemistry, 2007, 21, 504-513.	3.5	21
82	Deposition and Characterisation of Plasma Polymerised Allyl Methacrylate Based Coatings. Plasma Processes and Polymers, 2012, 9, 799-807.	3.0	21
83	RheoDSC: A hyphenated technique for the simultaneous measurement of calorimetric and rheological evolutions. Review of Scientific Instruments, 2008, 79, 023905.	1.3	20
84	Dynamics of the Crystal to Plastic Crystal Transition in the Hydrogen Bonded <i>N</i> -Isopropylpropionamide. Journal of Physical Chemistry B, 2010, 114, 13944-13949.	2.6	20
85	Modulated temperature differential scanning calorimetry. Journal of Theoretical Biology, 1997, 49, 443-447.	1.7	19
86	Software NoteOPTKIN—Mechanistic modeling by kinetic and thermodynamic parameter optimization. Computers & Chemistry, 1998, 22, 413-417.	1.2	19
87	UV-Curable Biobased Polyacrylates Based on a Multifunctional Monomer Derived from Furfural. Macromolecules, 2020, 53, 1388-1404.	4.8	19
88	Structure–Property Relationships of Self-Healing Polymer Networks Based on Reversible Diels–Alder Chemistry. Macromolecules, 2022, 55, 5497-5513.	4.8	19
89	RheoDSC: design and validation of a new hybrid measurement technique. Journal of Thermal Analysis and Calorimetry, 2009, 98, 675-681.	3.6	18
90	Time–temperature-transformation (TTT) and temperature–conversion-transformation (TxT) cure diagrams by RheoDSC: Combined rheometry and calorimetry on an epoxy-amine thermoset. Reactive and Functional Polymers, 2013, 73, 332-339.	4.1	18

#	Article	IF	CITATIONS
91	About the Influence of Double Bonds in the APPECVD of Acrylateâ€Like Precursors: A Mass Spectrometry Study of the Plasma Phase. Plasma Processes and Polymers, 2014, 11, 335-344.	3.0	18
92	RheoDSC Analysis of Hardening of Semi-Crystalline Polymers during Quiescent Isothermal Crystallization. International Polymer Processing, 2010, 25, 304-310.	0.5	17
93	Isothermal crystallization of P3HT:PCBM blends studied by RHC. Journal of Thermal Analysis and Calorimetry, 2011, 105, 845-849.	3.6	17
94	A time dependent DFT study of the efficiency of polymers for organic photovoltaics at the interface with PCBM. RSC Advances, 2014, 4, 52658-52667.	3.6	17
95	Synthesis of degradable multi-segmented polymers <i>via</i> Michael-addition thiol–ene step-growth polymerization. RSC Advances, 2015, 5, 81920-81932.	3.6	17
96	A Multi-Material Self-Healing Soft Gripper. , 2019, , .		17
97	Time-Temperature-Transformation, Temperature-Conversion-Transformation, and Continuous-Heating-Transformation Diagrams of Reversible Covalent Polymer Networks. Macromolecules, 2021, 54, 412-425.	4.8	17
98	Rheology of nanocomposites. Journal of Thermal Analysis and Calorimetry, 2011, 105, 731-736.	3.6	16
99	Thermal behaviour below and inside the glass transition region of a submicron P3HT layer studied by fast scanning chip calorimetry. Polymer, 2016, 83, 59-66.	3.8	16
100	Assessment of provoked compatibility of NBR/SBR polymer blend with montmorillonite amphiphiles from the thermal degradation kinetics. Polymer Bulletin, 2018, 75, 1417-1430.	3.3	16
101	The Influence of the Furan and Maleimide Stoichiometry on the Thermoreversible Diels–Alder Network Polymerization. Polymers, 2021, 13, 2522.	4.5	16
102	Reversible Lignin-Containing Networks Using Diels–Alder Chemistry. Macromolecules, 2021, 54, 9750-9760.	4.8	16
103	Fast-scanning calorimetry of electrospun polyamide nanofibres: Melting behaviour and crystal structure. Polymer, 2013, 54, 6809-6817.	3.8	15
104	Effect of nanofibres on the curing characteristics of an epoxy matrix. Composites Science and Technology, 2013, 79, 35-41.	7.8	15
105	Plasma Polymerization of a Saturated Branched Hydrocarbon. The Case of Heptamethylnonane. Plasma Processes and Polymers, 2013, 10, 51-59.	3.0	15
106	The rheological properties of hydrogenated castor oil crystals. Colloid and Polymer Science, 2014, 292, 2539-2547.	2.1	15
107	Influence of the processing solvent on the photoactive layer nanomorphology of P3HT/PC ₆₀ BM solar cells. Journal of Polymer Science Part A, 2012, 50, 1037-1041.	2.3	14
108	Anthracene-based polyurethane networks: Tunable thermal degradation, photochemical cure and stress-relaxation. European Polymer Journal, 2018, 105, 412-420.	5 . 4	14

#	Article	IF	CITATIONS
109	Monitoring the morphology development of polymer-monolithic stationary phases by thermal analysis. Journal of Separation Science, 2014, 37, 179-186.	2.5	13
110	Isothermal Crystallization of PC ₆₁ BM in Thin Layers Far below the Glass Transition Temperature. Crystal Growth and Design, 2015, 15, 5614-5623.	3.0	13
111	Functionalized Dithienylthiazolo[5,4â€ <i>d</i>]thiazoles For Solutionâ€Processable Organic Fieldâ€Effect Transistors. ChemPlusChem, 2012, 77, 923-930.	2.8	12
112	Preparation and characterization of ultra-hydrophobic calcium carbonate nanoparticles. IOP Conference Series: Materials Science and Engineering, 2014, 64, 012037.	0.6	12
113	Oxidation barrier of Cu and Fe powder by Atomic Layer Deposition. Surface and Coatings Technology, 2018, 349, 1032-1041.	4.8	12
114	Modulated Differential Scanning Calorimetry to Study Reacting Polymer Systems. Journal of Reinforced Plastics and Composites, 1999, 18, 885-894.	3.1	11
115	The effect of the moisture content on the curing characteristics of an epoxy matrix in the presence of nanofibrous structures. Polymer Testing, 2014, 40, 265-272.	4.8	11
116	A Healable Resistive Heater as a Stimuli-Providing System in Self-Healing Soft Robots. IEEE Robotics and Automation Letters, 2022, 7, 4574-4581.	5.1	11
117	Self-healing sensorized soft robots. , 2022, 1, 100003.		11
118	Predicting reflections of thin coatings. Surface and Coatings Technology, 2009, 204, 551-557.	4.8	10
119	Probing the bulk heterojunction morphology in thermally annealed active layers for polymer solar cells. Organic Electronics, 2017, 41, 319-326.	2.6	10
120	Monitoring initial contact of UV-cured organic coatings with aqueous solutions using odd random phase multisine electrochemical impedance spectroscopy. Corrosion Science, 2021, 190, 109713.	6.6	10
121	Kinetics and mechanism of the pyrolysis of 1-chloro-1,1-difluoroethane in the presence of additives. International Journal of Chemical Kinetics, 1998, 30, 359-366.	1.6	9
122	Investigation of self-healing compliant actuators for robotics. , 2015, , .		9
123	A novel donor-Ï€-acceptor anthracene monomer: Towards faster and milder reversible dimerization. Tetrahedron, 2019, 75, 912-920.	1.9	9
124	FEA-Based Inverse Kinematic Control: Hyperelastic Material Characterization of Self-Healing Soft Robots. IEEE Robotics and Automation Magazine, 2022, 29, 78-88.	2.0	9
125	Laser sintering of self-healable and recyclable thermoset networks. European Polymer Journal, 2022, 175, 111383.	5.4	9
126	Through-thickness analysis of the skin layer thickness of multi-layered biaxially-oriented polypropylene films by micro-thermal analysis. Polymer, 2005, 46, 7132-7139.	3.8	8

#	Article	IF	CITATIONS
127	Kinetics of Temperature-induced and Reaction-induced Phase Separation Studied by Modulated Temperature DSC. Macromolecular Symposia, 2006, 233, 36-41.	0.7	8
128	Micro- and nano-thermal analysis applied to multi-layered biaxially-oriented polypropylene films. Journal of Thermal Analysis and Calorimetry, 2009, 95, 207-213.	3.6	8
129	Incorporation of corrosion inhibitor in plasma polymerized allyl methacrylate coatings and evaluation of its corrosion performance. Surface and Coatings Technology, 2014, 259, 714-724.	4.8	8
130	Thermal Properties of Plasma Deposited Methyl Methacrylate Films in an Atmospheric DBD Reactor. Plasma Processes and Polymers, 2015, 12, 260-270.	3.0	7
131	Deposition Kinetics and Thermal Properties of Atmospheric Plasma Deposited Methacrylate-Like Films. Plasma Processes and Polymers, 2016, 13, 521-533.	3.0	7
132	Recent trends in nanostructured particles: synthesis, functionalization, and applications. , 2018, , 605-639.		7
133	Electrochemical characterization of plasma coatings on printed circuit boards. Progress in Organic Coatings, 2019, 137, 105256.	3.9	7
134	Phase Behavior in Blends of Ethylene Oxide–Propylene Oxide Copolymer and Poly(ether sulfone) Studied by Modulatedâ€Temperature DSC and NMR Relaxometry. Chemistry - A European Journal, 2009, 15, 1177-1185.	3.3	6
135	Construction of the state diagram of polymer blend thin films using differential AC chip calorimetry. Polymer, 2011, 52, 4277-4283.	3.8	6
136	Optimization of Extrusion Parameters for Preparing PCLâ€Layered Silicate Nanocomposites Supported by Modeling of Twinâ€Screw Extrusion. Macromolecular Materials and Engineering, 2013, 298, 210-220.	3.6	6
137	Influence of the amorphous phase and preceding solution processing on the eutectic behaviour in the state diagram of P3HT : PC ₆₁ BM determined by rapid heat–cool calorimetry. RSC Advance 2016, 6, 92981-92988.	e3, 6	6
138	Thermal dissociation of anthracene photodimers in the condensed state: kinetic evaluation and complex phase behaviour. Physical Chemistry Chemical Physics, 2020, 22, 17306-17313.	2.8	6
139	LCST demixing in poly(vinyl methyl ether)/water studied by means of a High Resolution Ultrasonic Resonator. Journal of Thermal Analysis and Calorimetry, 2009, 98, 495-505.	3.6	5
140	Quantitative analysis of polymer mixtures in solution by pulsed field-gradient spin echo NMR spectroscopy. Journal of Magnetic Resonance, 2013, 231, 46-53.	2.1	5
141	Effect of Substrate Temperature on Thermal Properties and Deposition Kinetics of Atmospheric Plasma Deposited Methyl(methacrylate) Films. Plasma Processes and Polymers, 2017, 14, 1500213.	3.0	5
142	Partially miscible polystyrene/polymethylphenylsiloxane blends for nanocomposites. Journal of Thermal Analysis and Calorimetry, 2011, 105, 775-781.	3.6	4
143	RheoDSC: Design optimisation by heat transfer modelling. Thermochimica Acta, 2012, 547, 130-140.	2.7	4
144	Modelled decomposition kinetics of flame retarded poly(vinyl acetate). Polymer Degradation and Stability, 2016, 130, 245-256.	5.8	4

#	Article	IF	Citations
145	Fast scanning chip calorimetry study of P3HT/PC ₆₁ BM submicron layers: structure formation and eutectic behaviour. Polymer International, 2019, 68, 277-282.	3.1	4
146	Water permeation in coatings. Journal of Coatings Technology Research, 2020, 17, 1437-1445.	2.5	4
147	Substituent effect on the thermophysical properties and thermal dissociation behaviour of 9-substituted anthracene derivatives. Physical Chemistry Chemical Physics, 2021, 23, 2252-2263.	2.8	4
148	Pyrolysis of 1-chloro-1,1-difluoroethane: Considerations about its molecular nature. International Journal of Chemical Kinetics, 1999, 31, 283-289.	1.6	3
149	Mathematical modeling of the thermal system of modulated temperature differential scanning calorimeter. Thermochimica Acta, 2002, 391, 87-95.	2.7	3
150	Isothermal Elimination ofn-Alkylsulfinyl OC1C10-PPV Precursor Polymers Studied with FT-IR, UVâ^'Vis, and MTDSC:Â Kinetics of the Elimination Reaction. Macromolecules, 2006, 39, 3194-3201.	4.8	3
151	Theoretical analysis of carbon nanotube wetting in polystyrene nanocomposites. Physical Chemistry Chemical Physics, 2009, 11, 11121.	2.8	3
152	Humidity Robustness of Plasma-Coated PCBs. Journal of Electronic Materials, 2020, 49, 848-860.	2.2	3
153	Non-isothermal elimination process in the solid state of n-alkyl-sulphinyl precursor polymers towards conjugated poly[2-(3′,7′-dimethyloctyloxy)-5-methoxy-1,4-phenylene vinylene] studied with MTDSC and TGA. Polymer, 2006, 47, 7935-7942.	3.8	2
154	Elucidating the aspect of "phase separation" in organic blends by means of thermal analysis. , 2007, , .		2
155	The Application of Modulated Temperature Differential Scanning Calorimetry for the Characterisation of Curing Systems. Hot Topics in Thermal Analysis and Calorimetry, 2006, , 83-160.	0.5	2
156	Quasi-Static FEA Model for a Multi-Material Soft Pneumatic Actuator in SOFA. IEEE Robotics and Automation Letters, 2022, 7, 7391-7398.	5.1	2
157	Crystallization kinetics and morphology relations on thermally annealed bulk heterojunction solar cell blends studied by rapid heat cool calorimetry (RHC). , 2012, , .		1
158	Homocoupling Defects of a Small Donor Molecule for Organic Photovoltaics: Quantification of the Eutectic State Diagram by Rapid Heat–Cool Differential Scanning Calorimetry. Journal of Physical Chemistry C, 2019, 123, 22634-22642.	3.1	1
159	Prilling of API/fatty acid suspensions: Processability and characterisation. International Journal of Pharmaceutics, 2019, 572, 118756.	5.2	1
160	Phase Behavior in the Active Layer of Small Molecule Organic Photovoltaics: State Diagram of p-DTS(FBTTh2)2:PC71BM. Journal of Physical Chemistry C, 2020, 124, 7566-7577.	3.1	1
161	Mechanistic modeling of the wall reactions in the pyrolysis of pentachloroethane. International Journal of Chemical Kinetics, 2002, 34, 322-330.	1.6	0
162	The use of nanofibers of P3HT in bulk heterojunction solar cells: the effect of order and morphology on the performance of P3HT:PCBM blends. , 2009, , .		0

#	Article	IF	CITATIONS
163	Looking at bulk-heterojunction organic photovoltaics from two viewpoints: morphology development and charge transfer. Proceedings of SPIE, 2012, , .	0.8	O
164	Prilling of API/fatty acid suspensions: Screening of additives for drug release modification. International Journal of Pharmaceutics, 2020, 576, 119022.	5.2	0