Muhammad R Niazi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7395633/publications.pdf

Version: 2024-02-01

414414 394421 2,273 37 19 32 citations g-index h-index papers 37 37 37 3834 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Conjugated polymers with controllable interfacial order and energetics enable tunable heterojunctions in organic and colloidal quantum dot photovoltaics. Journal of Materials Chemistry A, 2022, 10, 1788-1801.	10.3	6
2	A Universal Cosolvent Evaporation Strategy Enables Direct Printing of Perovskite Single Crystals for Optoelectronic Device Applications. Advanced Materials, 2022, 34, e2109862.	21.0	18
3	Controlling Structural and Energetic Disorder in High-Mobility Polymer Semiconductors via Doping with Nitroaromatics. Chemistry of Materials, 2021, 33, 2937-2947.	6.7	15
4	Mechanism of the Photodegradation of Aâ€Dâ€A Acceptors for Organic Photovoltaics**. Angewandte Chemie - International Edition, 2021, 60, 24833-24837.	13.8	47
5	Star-shaped triarylamine-based hole-transport materials in perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 779-787.	4.9	5
6	Systematic Study on the Morphological Development of Blade-Coated Conjugated Polymer Thin Films via In Situ Measurements. ACS Applied Materials & Samp; Interfaces, 2020, 12, 36417-36427.	8.0	15
7	Impact of p-type doping on charge transport in blade-coated small-molecule:polymer blend transistors. Journal of Materials Chemistry C, 2020, 8, 15368-15376.	5.5	19
8	Nitroaromatics as n-type organic semiconductors for field effect transistors. Chemical Communications, 2020, 56, 6432-6435.	4.1	14
9	A macrocyclic oligofuran: synthesis, solid state structure and electronic properties. Chemical Science, 2019, 10, 8527-8532.	7.4	22
10	Strong Enhancement of Ï€â€Electron Donor/Acceptor Ability by Complementary DD/AA Hydrogen Bonding. Angewandte Chemie, 2019, 131, 17473-17482.	2.0	11
11	Strong Enhancement of Ï€â€Electron Donor/Acceptor Ability by Complementary DD/AA Hydrogen Bonding. Angewandte Chemie - International Edition, 2019, 58, 17312-17321.	13.8	48
12	Addition of the Lewis Acid Zn(C $<$ sub $>$ 6 $<$ /sub $>$ F $<$ sub $>$ 5 $<$ /sub $>$) $<$ sub $>$ 2 $<$ /sub $>$ Enables Organic Transistors with a Maximum Hole Mobility in Excess of 20 cm $<$ sup $>$ 2 $<$ /sup $>$ V $<$ sup $>$ â 2 1 $<$ /sup $>$ 5 $<$ sup $>$ 8 2 1 $<$ /sup $>$ 8. Advanced Materials, 2019, 31, e1900871.	21.0	64
13	Impact of the Gate Dielectric on Contact Resistance in Highâ€Mobility Organic Transistors. Advanced Electronic Materials, 2019, 5, 1800723.	5.1	40
14	Conducting and Stretchable PEDOT:PSS Electrodes: Role of Additives on Self-Assembly, Morphology, and Transport. ACS Applied Materials & Samp; Interfaces, 2019, 11, 17570-17582.	8.0	72
15	Frontispiece: Strong Enhancement of Ï€â€Electron Donor/Acceptor Ability by Complementary DD/AA Hydrogen Bonding. Angewandte Chemie - International Edition, 2019, 58, .	13.8	0
16	Frontispiz: Strong Enhancement of Ï€â€Electron Donor/Acceptor Ability by Complementary DD/AA Hydrogen Bonding. Angewandte Chemie, 2019, 131, .	2.0	0
17	Bistetracene Thin Film Polymorphic Control to Unravel the Effect of Molecular Packing on Charge Transport. Advanced Materials Interfaces, 2018, 5, 1701607.	3.7	14
18	The Impact of Molecular pâ€Doping on Charge Transport in Highâ€Mobility Smallâ€Molecule/Polymer Blend Organic Transistors. Advanced Electronic Materials, 2018, 4, 1700464.	5.1	63

#	Article	IF	Citations
19	Blade-Coated Hybrid Perovskite Solar Cells with Efficiency > 17%: An In Situ Investigation. ACS Energy Letters, 2018, 3, 1078-1085.	17.4	171
20	Single crystal hybrid perovskite field-effect transistors. Nature Communications, 2018, 9, 5354.	12.8	255
21	Solar Cells: Overcoming the Ambient Manufacturabilityâ€Scalabilityâ€Performance Bottleneck in Colloidal Quantum Dot Photovoltaics (Adv. Mater. 35/2018). Advanced Materials, 2018, 30, 1870260.	21.0	3
22	Solvent Vapor Annealing: Bistetracene Thin Film Polymorphic Control to Unravel the Effect of Molecular Packing on Charge Transport (Adv. Mater. Interfaces 9/2018). Advanced Materials Interfaces, 2018, 5, 1870040.	3.7	0
23	Overcoming the Ambient Manufacturabilityâ€Scalabilityâ€Performance Bottleneck in Colloidal Quantum Dot Photovoltaics. Advanced Materials, 2018, 30, e1801661.	21.0	79
24	Programmable and coherent crystallization of semiconductors. Science Advances, 2017, 3, e1602462.	10.3	35
25	Laserâ€Printed Organic Thinâ€Film Transistors. Advanced Materials Technologies, 2017, 2, 1700167.	5.8	17
26	Crossover from band-like to thermally activated charge transport in organic transistors due to strain-induced traps. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6739-E6748.	7.1	77
27	Organic Thinâ€Film Transistors: Laserâ€Printed Organic Thinâ€Film Transistors (Adv. Mater. Technol.) Tj ETQq1	1 0,7,8431	4 rgBT /Overl
28	Vertical Phase Separation in Small Molecule:Polymer Blend Organic Thin Film Transistors Can Be Dynamically Controlled. Advanced Functional Materials, 2016, 26, 1737-1746.	14.9	98
29	Thin Film Transistors: Contact-Induced Nucleation in High-Performance Bottom-Contact Organic Thin Film Transistors Manufactured by Large-Area Compatible Solution Processing (Adv. Funct. Mater.) Tj ETQq1 1 0	.78 43.1 94 rg	gBT‡Overlock
30	Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors. Journal of the American Chemical Society, 2016, 138, 10252-10259.	13.7	270
31	N-type organic electrochemical transistors with stability in water. Nature Communications, 2016, 7, 13066.	12.8	242
32	Contactâ€Induced Nucleation in Highâ€Performance Bottomâ€Contact Organic Thin Film Transistors Manufactured by Largeâ€Area Compatible Solution Processing. Advanced Functional Materials, 2016, 26, 2371-2378.	14.9	71
33	A Thieno[3,2â€ <i>b</i>][1]benzothiophene Isoindigo Building Block for Additive―and Annealingâ€Free Highâ€Performance Polymer Solar Cells. Advanced Materials, 2015, 27, 4702-4707.	21.0	120
34	Solution-printed organic semiconductor blends exhibiting transport properties on par with single crystals. Nature Communications, 2015, 6, 8598.	12.8	219
35	In situ UV-visible absorption during spin-coating of organic semiconductors: a new probe for organic electronics and photovoltaics. Journal of Materials Chemistry C, 2014, 2, 3373.	5.5	82
36	Late stage crystallization and healing during spin-coating enhance carrier transport in small-molecule organic semiconductors. Journal of Materials Chemistry C, 2014, 2, 5681-5689.	5 . 5	58

#	Article	IF	CITATIONS
37	Mechanism of the Photodegradation of Aâ \in Dâ \in A Acceptors for Organic Photovoltaics. Angewandte Chemie, 0, , .	2.0	1