
Ashani T Weeraratna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7395423/publications.pdf Version: 2024-02-01

ASHANI T WEEDADATNA

#	Article	IF	CITATIONS
1	A Series of BRAF- and NRAS-Driven Murine Melanoma Cell Lines with Inducible Gene Modulation Capabilities. JID Innovations, 2022, 2, 100076.	2.4	4
2	Shared genetic and epigenetic changes link aging and cancer. Trends in Cell Biology, 2022, 32, 338-350.	7.9	20
3	Stromal changes in the aged lung induce an emergence from melanoma dormancy. Nature, 2022, 606, 396-405.	27.8	67
4	Myeloid-Derived Suppressor Cells Are a Major Source of Wnt5A in the Melanoma Microenvironment and Depend on Wnt5A for Full Suppressive Activity. Cancer Research, 2021, 81, 658-670.	0.9	15
5	The State of Melanoma: Emergent Challenges and Opportunities. Clinical Cancer Research, 2021, 27, 2678-2697.	7.0	53
6	The dark side of daylight: photoaging and the tumor microenvironment in melanoma progression. Journal of Clinical Investigation, 2021, 131, .	8.2	17
7	Analysis of immune checkpoint blockade biomarkers in elderly patients using large-scale cancer genomics data Journal of Clinical Oncology, 2021, 39, 2543-2543.	1.6	1
8	Melanoma models for the next generation of therapies. Cancer Cell, 2021, 39, 610-631.	16.8	90
9	Evaluating the impact of age on immune checkpoint therapy biomarkers. Cell Reports, 2021, 36, 109599.	6.4	27
10	Genetic screening for single-cell variability modulators driving therapy resistance. Nature Genetics, 2021, 53, 76-85.	21.4	41
11	HSP70 Inhibition Blocks Adaptive Resistance and Synergizes with MEK Inhibition for the Treatment of <i>NRAS</i> -Mutant Melanoma. Cancer Research Communications, 2021, 1, 17-29.	1.7	5
12	Normal Aging and Its Role in Cancer Metastasis. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a037341.	6.2	17
13	How the ageing microenvironment influences tumour progression. Nature Reviews Cancer, 2020, 20, 89-106.	28.4	408
14	Paradoxical Role for Wild-Type p53 in Driving Therapy Resistance in Melanoma. Molecular Cell, 2020, 77, 633-644.e5.	9.7	45
15	Preserve junior faculty in biomedical sciences during and after the pandemic. Nature Medicine, 2020, 26, 1003-1004.	30.7	4
16	sFRP2 Supersedes VEGF as an Age-related Driver of Angiogenesis in Melanoma, Affecting Response to Anti-VEGF Therapy in Older Patients. Clinical Cancer Research, 2020, 26, 5709-5719.	7.0	17
17	Completing the Great Unfinished Symphony of Cancer Together: The Importance of Immigrants in Cancer Research. Cancer Cell, 2020, 38, 301-305.	16.8	0
18	The Race toward Equity: Increasing Racial Diversity in Cancer Research and Cancer Care. Cancer Discovery, 2020, 10, 1451-1454.	9.4	11

#	Article	IF	CITATIONS
19	A glitch in the matrix: Ageâ€dependent changes in the extracellular matrix facilitate common sites of metastasis. Aging and Cancer, 2020, 1, 19-29.	1.6	11
20	Changes in Aged Fibroblast Lipid Metabolism Induce Age-Dependent Melanoma Cell Resistance to Targeted Therapy via the Fatty Acid Transporter FATP2. Cancer Discovery, 2020, 10, 1282-1295.	9.4	75
21	A framework for advancing our understanding of cancer-associated fibroblasts. Nature Reviews Cancer, 2020, 20, 174-186.	28.4	2,012
22	Deconstructing tumor heterogeneity: the stromal perspective. Oncotarget, 2020, 11, 3621-3632.	1.8	29
23	Key Signaling Pathways in Normal and Neoplastic Melanocytes. , 2019, , 63-81.		0
24	Women in cancer research. Nature Reviews Cancer, 2019, 19, 547-552.	28.4	10
25	Supporting women in science at <scp>PCMR</scp> . Pigment Cell and Melanoma Research, 2019, 32, 484-485.	3.3	0
26	Polyunsaturated Fatty Acids from Astrocytes Activate PPARÎ ³ Signaling in Cancer Cells to Promote Brain Metastasis. Cancer Discovery, 2019, 9, 1720-1735.	9.4	97
27	Tumour Dormancy and Reawakening: Opportunities and Challenges. Trends in Cancer, 2019, 5, 762-765.	7.4	23
28	Bad company: Microenvironmentally mediated resistance to targeted therapy in melanoma. Pigment Cell and Melanoma Research, 2019, 32, 237-247.	3.3	35
29	ER stress promotes antitumor effects in BRAFi/MEKi resistant human melanoma induced by natural compound 4-nerolidylcathecol (4-NC). Pharmacological Research, 2019, 141, 63-72.	7.1	14
30	Age-Related Changes in HAPLN1 Increase Lymphatic Permeability and Affect Routes of Melanoma Metastasis. Cancer Discovery, 2019, 9, 82-95.	9.4	100
31	Remodeling of the Collagen Matrix in Aging Skin Promotes Melanoma Metastasis and Affects Immune Cell Motility. Cancer Discovery, 2019, 9, 64-81.	9.4	260
32	Coâ€ŧargeting <scp>BET</scp> and <scp>MEK</scp> as salvage therapy for <scp>MAPK</scp> and checkpoint inhibitorâ€ŧesistant melanoma. EMBO Molecular Medicine, 2018, 10, .	6.9	79
33	Key Signaling Pathways in Normal and Neoplastic Melanocytes. , 2018, , 1-19.		0
34	Age Correlates with Response to Anti-PD1, Reflecting Age-Related Differences in Intratumoral Effector and Regulatory T-Cell Populations. Clinical Cancer Research, 2018, 24, 5347-5356.	7.0	253
35	Inhibition of Age-Related Therapy Resistance in Melanoma by Rosiglitazone-Mediated Induction of Klotho. Clinical Cancer Research, 2017, 23, 3181-3190.	7.0	30
36	Modeling the two-way feedback between contractility and matrix realignment reveals a nonlinear mode of cancer cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1617-E1626.	7.1	158

ASHANI T WEERARATNA

#	Article	IF	CITATIONS
37	When metastasis â€~Spns' out of control: Coverage of â€~Genomeâ€wide in vivo screen identifies novel host regulators of metastatic colonization'. Pigment Cell and Melanoma Research, 2017, 30, 384-385.	3.3	0
38	ATG5 Mediates a Positive Feedback Loop between Wnt Signaling and Autophagy in Melanoma. Cancer Research, 2017, 77, 5873-5885.	0.9	26
39	Cancer-Associated Fibroblasts Neutralize the Anti-tumor Effect of CSF1 Receptor Blockade by Inducing PMN-MDSC Infiltration of Tumors. Cancer Cell, 2017, 32, 654-668.e5.	16.8	457
40	Syntaphilin controls a mitochondrial rheostat for proliferation-motility decisions in cancer. Journal of Clinical Investigation, 2017, 127, 3755-3769.	8.2	37
41	Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors. Journal of Clinical Investigation, 2016, 126, 1834-1856.	8.2	219
42	Enhancing the evaluation of <scp>PI</scp> 3K inhibitors through 3DÂmelanoma models. Pigment Cell and Melanoma Research, 2016, 29, 317-328.	3.3	12
43	sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature, 2016, 532, 250-254.	27.8	290
44	Response to Programmed Cell Death-1 Blockade in a Murine Melanoma Syngeneic Model Requires Costimulation, CD4, and CD8 T Cells. Cancer Immunology Research, 2016, 4, 845-857.	3.4	110
45	UNRelenting Translation UNRestrains Melanoma Migration. Cancer Cell, 2016, 30, 655-657.	16.8	2
46	In the Wnt-er of life: Wnt signalling in melanoma and ageing. British Journal of Cancer, 2016, 115, 1273-1279.	6.4	54
47	HSP70 Inhibition Limits FAK-Dependent Invasion and Enhances the Response to Melanoma Treatment with BRAF Inhibitors. Cancer Research, 2016, 76, 2720-2730.	0.9	33
48	Personalized Preclinical Trials in BRAF Inhibitor–Resistant Patient-Derived Xenograft Models Identify Second-Line Combination Therapies. Clinical Cancer Research, 2016, 22, 1592-1602.	7.0	108
49	Autophagy- An emerging target for melanoma therapy. F1000Research, 2016, 5, 1888.	1.6	49
50	Novel Protein Kinase C-Mediated Control of Orai1 Function in Invasive Melanoma. Molecular and Cellular Biology, 2015, 35, 2790-2798.	2.3	42
51	The Wnts of change: How Wnts regulate phenotype switching in melanoma. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1856, 244-251.	7.4	52
52	UV-Induced Wnt7a in the Human Skin Microenvironment Specifies the Fate of Neural Crest–Like Cells via Suppression of Notch. Journal of Investigative Dermatology, 2015, 135, 1521-1532.	0.7	18
53	PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8638-8643.	7.1	174
54	<scp>W</scp> nt5 <scp>A</scp> promotes an adaptive, senescentâ€like stress response, while continuing to drive invasion in melanoma cells. Pigment Cell and Melanoma Research, 2015, 28, 184-195.	3.3	77

Ashani T Weeraratna

#	Article	IF	CITATIONS
55	Meeting report from the 10th International Congress of the Society for Melanoma Research, Philadelphia, PA, November 2013. Pigment Cell and Melanoma Research, 2014, 27, E1-E12.	3.3	1
56	Bisphosphonamidate Clodronate Prodrug Exhibits Selective Cytotoxic Activity against Melanoma Cell Lines. Molecular Cancer Therapeutics, 2014, 13, 297-306.	4.1	11
57	Change Is in the Air: The Hypoxic Induction of Phenotype Switching in Melanoma. Journal of Investigative Dermatology, 2013, 133, 2316-2317.	0.7	17
58	A Wnt-er Migration: The Confusing Role of β-Catenin in Melanoma Metastasis. Science Signaling, 2013, 6, pe11.	3.6	59
59	Cyclophilin D Extramitochondrial Signaling Controls Cell Cycle Progression and Chemokine-directed Cell Motility*. Journal of Biological Chemistry, 2013, 288, 5553-5561.	3.4	39
60	Hypoxia Induces Phenotypic Plasticity and Therapy Resistance in Melanoma via the Tyrosine Kinase Receptors ROR1 and ROR2. Cancer Discovery, 2013, 3, 1378-1393.	9.4	197
61	Metabolic stress regulates cytoskeletal dynamics and metastasis of cancer cells. Journal of Clinical Investigation, 2013, 123, 2907-2920.	8.2	165
62	RAF around the Edges — The Paradox of BRAF Inhibitors. New England Journal of Medicine, 2012, 366, 271-273.	27.0	59
63	Molecular signature and in vivo behavior of bone marrow endosteal and subendosteal stromal cell populations and their relevance to hematopoiesis. Experimental Cell Research, 2012, 318, 2427-2437.	2.6	32
64	Automatic detection of melanoma progression by histological analysis of secondary sites. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2012, 81A, 364-373.	1.5	10
65	Loss of Klotho during melanoma progression leads to increased filamin cleavage, increased Wnt5A expression, and enhanced melanoma cell motility. Pigment Cell and Melanoma Research, 2011, 24, 175-186.	3.3	68
66	Differential LEF1 and TCF4 expression is involved in melanoma cell phenotype switching. Pigment Cell and Melanoma Research, 2011, 24, 631-642.	3.3	81
67	The immunohistochemistry of invasive and proliferative phenotype switching in melanoma: a case report. Melanoma Research, 2010, 20, 349-355.	1.2	43
68	Lack of Wnt5A Expression in Merkel Cell Carcinoma. Archives of Dermatology, 2010, 146, 88-9.	1.4	8
69	Striking the target in Wnt-y conditions: Intervening in Wnt signaling during cancer progression. Biochemical Pharmacology, 2010, 80, 702-711.	4.4	44
70	Transcriptome analysis of murine thymocytes reveals age-associated changes in thymic gene expression. International Journal of Medical Sciences, 2009, 6, 51-64.	2.5	22
71	PKC and PKA Phosphorylation Affect the Subcellular Localization of Claudin-1 in Melanoma Cells. International Journal of Medical Sciences, 2009, 6, 93-101.	2.5	92
72	Sperm-Derived SPANX-B Is a Clinically Relevant Tumor Antigen That Is Expressed in Human Tumors and Readily Recognized by Human CD4+ and CD8+ T Cells. Clinical Cancer Research, 2009, 15, 1954-1963.	7.0	26

ASHANI T WEERARATNA

#	Article	IF	CITATIONS
73	Active Notch1 Confers a Transformed Phenotype to Primary Human Melanocytes. Cancer Research, 2009, 69, 5312-5320.	0.9	103
74	Heparan Sulfate Proteoglycan Modulation of Wnt5A Signal Transduction in Metastatic Melanoma Cells. Journal of Biological Chemistry, 2009, 284, 28704-28712.	3.4	63
75	Phenylmethimazole Decreases Toll-Like Receptor 3 and Noncanonical Wnt5a Expression in Pancreatic Cancer and Melanoma Together with Tumor Cell Growth and Migration. Clinical Cancer Research, 2009, 15, 4114-4122.	7.0	64
76	Wnt5A Activates the Calpain-Mediated Cleavage of Filamin A. Journal of Investigative Dermatology, 2009, 129, 1782-1789.	0.7	64
77	Analysis of the matrix metalloproteinase family reveals that MMP8 is often mutated in melanoma. Nature Genetics, 2009, 41, 518-520.	21.4	145
78	Hear the Wnt Ror: how melanoma cells adjust to changes in Wnt. Pigment Cell and Melanoma Research, 2009, 22, 724-739.	3.3	78
79	Activation of Wnt5A signaling is required for CXC chemokine ligand 12–mediated T-cell migration. Blood, 2009, 114, 1366-1373.	1.4	58
80	Wnt5A Regulates Expression of Tumor-Associated Antigens in Melanoma via Changes in Signal Transducers and Activators of Transcription 3 Phosphorylation. Cancer Research, 2008, 68, 10205-10214.	0.9	111
81	AGEMAP: A Gene Expression Database for Aging in Mice. PLoS Genetics, 2007, 3, e201.	3.5	355
82	p21 gene knock down does not identify genetic effectors seen with gene knock out. Cancer Biology and Therapy, 2007, 6, 1025-1030.	3.4	22
83	The Wnt5A/Protein Kinase C Pathway Mediates Motility in Melanoma Cells via the Inhibition of Metastasis Suppressors and Initiation of an Epithelial to Mesenchymal Transition. Journal of Biological Chemistry, 2007, 282, 17259-17271.	3.4	310
84	CXCL12â€induced partitioning of flotillinâ€1 with lipid rafts plays a role in CXCR4 function. European Journal of Immunology, 2007, 37, 2104-2116.	2.9	40
85	Transcriptome analysis of age-, gender- and diet-associated changes in murine thymus. Cellular Immunology, 2007, 245, 42-61.	3.0	29
86	Alterations in immunological and neurological gene expression patterns in Alzheimer's disease tissues. Experimental Cell Research, 2007, 313, 450-461.	2.6	96
87	Ghrelin promotes thymopoiesis during aging. Journal of Clinical Investigation, 2007, 117, 2778-2790.	8.2	174
88	F.113. Wnt5a Regulates Melanoma Antigen Recognized By T-Cells-1 (Mart-1), a Predominant Antigen in Melanoma Cells. Clinical Immunology, 2006, 119, S90.	3.2	0
89	Ghrelin and the Growth Hormone Secretagogue Receptor Constitute a Novel Autocrine Pathway in Astrocytoma Motility*. Journal of Biological Chemistry, 2006, 281, 16681-16690.	3.4	62
90	A Wnt-er Wonderland—The complexity of Wnt signaling in melanoma. Cancer and Metastasis Reviews, 2005, 24, 237-250.	5.9	72

ASHANI T WEERARATNA

#	Article	IF	CITATIONS
91	Discovering causes and cures for cancer from gene expression analysis. Ageing Research Reviews, 2005, 4, 548-563.	10.9	14
92	When Will Melanoma Vaccines Be Proven Effective?. Journal of Clinical Oncology, 2004, 22, 387-389.	1.6	28
93	SAGE Identification and Fluorescence Imaging Analysis of Genes and Transcripts in Melanomas and Precursor Lesions. Cancer Biology and Therapy, 2004, 3, 104-109.	3.4	22
94	Generation and analysis of melanoma SAGE libraries: SAGE advice on the melanoma transcriptome. Oncogene, 2004, 23, 2264-2274.	5.9	71
95	Gene Expression Profiling: From Microarrays to Medicine. Journal of Clinical Immunology, 2004, 24, 213-224.	3.8	48
96	Remodeling of the extracellular matrix through overexpression of collagen VI contributes to cisplatin resistance in ovarian cancer cells. Cancer Cell, 2003, 3, 377-386.	16.8	287
97	Serial Analysis of Gene Expression (SAGE): Advances, Analysis and Applications to Pigment Cell Research. Pigment Cell & Melanoma Research, 2003, 16, 183-189.	3.6	11
98	Uteroglobin: A Potential Novel Tumor Suppressor and Molecular Therapeutic for Prostate Cancer. Clinical Prostate Cancer, 2002, 1, 118-124.	2.1	10
99	Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell, 2002, 1, 279-288.	16.8	859
100	Trk receptor inhibition induces apoptosis of proliferating but not quiescent human osteoblasts. Cancer Research, 2002, 62, 986-9.	0.9	18
101	Thapsigargin induces a calmodulin/calcineurin-dependent apoptotic cascade responsible for the death of prostatic cancer cells. Prostate, 2000, 43, 303-317.	2.3	100
102	Rational basis for Trk inhibition therapy for prostate cancer. Prostate, 2000, 45, 140-148.	2.3	112